Harvesting water from untapped fog is a potential and sustainable solution to freshwater shortages. However, designing high-efficiency fog collectors is still a critical and challenging task. Herein, learning from the unique microstructures and functionalities of the Namib desert beetle, honeycomb, and pitcher plant, we present a multi-bioinspired patterned fog collector with hydrophilic nanofibrous bumps and a hydrophobic slippery substrate for spontaneous and efficient fog collection. Interestingly, hydrophilic nanofibrous bumps display a honeycomb-like cellular grid structure self-assembled from electrospun nanofibers. Notably, the patterned nanofibrous fog collector exhibits superior watercollecting efficiency of 1111 mg cm −2 h −1 . The hydrophilic nanofibrous bumps increase the effective fog-collecting area, and the hydrophobic slippery substrate promotes quick transport of collected water in the desired direction reducing the secondary water evaporation, finally achieving rapid directional transport of tiny droplets and high-efficiency water collection. This work opens a new avenue to collect water efficiently and provides clues to research on the multi-bioinspired synergistical optimization strategy.
Functional textiles with enhanced moisture management can facilitate sweat transport away from the skin to improve personal comfort. However, porous materials exhibit low capability of preventing the intrusion of external liquids, becoming a bottleneck in the design of medical protective clothing. Herein, a trilayered composite fabric based on a gradient wettability structure is demonstrated for directional water transport and resistance to blood penetration. The proposed fabric shows distinct advantages, including a high water breakthrough pressure of 2.43 kPa from the external side, an outstanding positive water transport index (1522%), and an antiblood penetration resistance of 2.71 kPa. Moreover, the fabric shows improved comfort with a high moisture transmission (320 g m–2 h–1) and desired water evaporation rate (0.36 g h–1). This work addressed the concern of directional water transport and resistance to blood penetration while providing a comfortable wearing microenvironment, leading to a promising research direction for multifunctional medical textiles.
Freshwater shortage is a critical global issue that needs to be resolved urgently. Efficient water collection from fog provides a promising and sustainable solution to produce clean drinking water, especially in the desert and arid regions. Nature has long served as our best source of inspiration for designing new structures and developing new materials. Herein, we report a strategy to design a novel Janus fog collector with a hydrophilic lizard-skin-like nanofibrous network upper surface and hydrophobic slippery lower surface using a simple and feasible method of coating and electrospinning. We analyze the forming law of the lizard-skin-like nanofibrous network structure on different substrates using electric field simulation. The resulting copper mesh-based Janus fog collector exhibits superior water-collecting efficiency (907 mg cm–2 h–1) and long-term durability, achieving directional transport of tiny droplets and high-efficiency water collection. However, there are few reports on the combination of the lizard-skin-like nanofibrous capillary network and slippery surface for efficient fog collection. Therefore, we believe that this work will open a new avenue to collect water efficiently and also provide clues to research on the lizard-skin-like nanofibrous network structure.
Currently, the quest for highly transparent and flexible fibrous membranes with robust mechanical characteristics, high breathability, and good filtration performance is rapidly rising because of their potential use in the fields of electronics, energy, environment, medical, and health. However, it is still an extremely challenging task to realize transparent fibrous membranes due to serious surface light reflection and internal light scattering. Here, we report the design and development of a simple and effective topological structure to create porous, breathable, and high visible light transmitting fibrous membranes (HLTFMs). The resultant HLTFMs exhibit good optical performance (up to 90% transmittance) and high porosities (>80%). The formation of such useful structure with high light transmittance has been revealed by electric field simulation, and the mechanism of fibrous membrane structure to achieve high light transmittance has been proposed. Moreover, transparent masks have been prepared to evaluate the filtration performance and analyze their feasibility to meet requirement of facial recognition systems. The prepared masks display high transparency (>80%), low pressure drop (<100 Pa) and high filtration efficiency (>90%). Furthermore, the person wearing this mask can be successfully identified by facial recognition systems. Therefore, this work provides an idea for the development of transparent, breathable, and high-performance fibrous membranes.
Developing dynamic moisture management of textiles is of great significance for smart clothing. However, the current pore‐actuated fabric suffers from macro‐dimensional deformation in response. Moreover, the fabric is limited in its ability to control the direction and speed of sweat transfer. Herein, a patterned cotton fabric (PCF) is proposed by constructing thermal‐triggered transmission channels on the knitted hydrophobic cotton. The resultant fabric can switch the mode of channels spontaneously depending on ambient temperature. When PCF is exposed to the cold environment, the channels are “closed”, which prevents the intrusion of rainwater, reducing moisture permeability (12.1% lower than cotton) and maintaining human body temperature (0.8 °C higher than cotton). When the weather gets hot, channels are “open”, allowing for efficient transportation of water vapor (18.0% higher than cotton) and directional sweat transportation. This design allows adaptive water vapor gating to synergistically occur with directional liquid transport, maximizing personal warming (when cold and raining) and cooling (when hot and sweating).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.