Alzheimer's disease (AD) is one of the most common neurodegenerative causes of dementia, the pathology of which is still not much clear. It′s challenging to discover the disease modifying agents for the prevention and treatment of AD over the years. Emerging evidence has been accumulated to reveal the crucial role of up‐regulated glutaminyl cyclase (QC) in the initiation of AD. In the current study, the QC inhibitory potency of a library consisting of 1621 FDA‐approved compounds was assessed. A total of 54 hits, 3.33 % of the pool, exhibited QC inhibitory activities. The Ki of the top 5 compounds with the highest QC inhibitory activities were measured. Among these selected hits, compounds affecting neuronal signaling pathways and other mechanisms were recognized. Moreover, several polyphenol derivatives with QC inhibitory activities were also identified. Frameworks and subsets contained in these hits were analyzed. Taken together, our results may contribute to the discovery and development of novel QC inhibitors as potential anti‐AD agents.
Glutaminyl cyclase (QC) is responsible for converting the N-terminal glutaminyl and glutamyl of the proteins into pyroglutamate (pE) through cyclization. It has been confirmed that QC catalyzes the formation of neurotoxic pE-modified Aβ in the brain of AD patients. But the effects of upregulated QC in diverse diseases have not been much clear until recently. Here, RNA sequencing was applied to identify differentially expressed genes (DEGs) in PC12 cells with QC overexpressing or knockdown. A total of 697 DEGs were identified in QC overexpressing cells while only 77 in QC knockdown cells. Multiple bioinformatic approaches revealed that the DEGs in QC overexpressing group were enriched in endoplasmic reticulum stress (ERS) related signaling pathways. The gene expression patterns of 23 DEGs were confirmed by RT-qPCR, in which the genes related to ERS showed the highest consistency. We also revealed the protein levels of GRP78, PERK, CHOP, and PARP-1, and caspase family was significantly upregulated by overexpressing QC. Moreover, overexpressing QC significantly increased apoptosis of PC12 cells in a time dependent manner. However, no significant alteration was observed in QC knockdown cells. Therefore, our study indicated that upregulated QC could induce ERS and apoptosis, which consequently trigger diseases by catalyzing the generation of pE-modified mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.