Frontiers in Microbiology | www.frontiersin.org February 2020 | Volume 11 | Article 240 Yao et al. Virome Identification and Characterization of Fusarium spp.was observed and the characterization of the four-segment dsRNA chrysovirus was performed with aid of electron microscopy and analysis of the encapsidated RNAs. These findings provide insight into the diversity and spectrum of mycoviruses in PBD pathogens and should be useful for exploring agents to control the disease.
The root rot disease causes a great economic loss, and the disease severity usually increases as ginseng ages. However, it is still unclear whether the disease severity is related to changes in microorganisms during the entire growing stage of American ginseng. The present study examined the microbial community in the rhizosphere and the chemical properties of the soil in 1–4-year-old ginseng plants grown in different seasons at two different sites. Additionally, the study investigated ginseng plants' root rot disease index (DI). The results showed that the DI of ginseng increased 2.2 times in one sampling site and 4.7 times in another during the 4 years. With respect to the microbial community, the bacterial diversity increased with the seasons in the first, third, and fourth years but remained steady in the second year. The seasonal changing of relative abundances of bacteria and fungi showed the same trend in the first, third, and fourth years but not in the second year. Linear models revealed that the relative abundances of Blastococcus, Symbiobacterium, Goffeauzyma, Entoloma, Staphylotrichum, Gymnomyces, Hirsutella, Penicillium and Suillus spp. were negatively correlated with DI, while the relative abundance of Pandoraea, Rhizomicrobium, Hebeloma, Elaphomyces, Pseudeurotium, Fusarium, Geomyces, Polyscytalum, Remersonia, Rhizopus, Acremonium, Paraphaeosphaeria, Mortierella, and Metarhizium spp. were positively correlated with DI (P < 0.05). The Mantel test showed that soil chemical properties, including available nitrogen, phosphorus, potassium, calcium, magnesium, organic matter, and pH, were significantly correlated to microbial composition. The contents of available potassium and nitrogen were positively correlated with DI, while pH and organic matter were negatively correlated with DI. In summary, we can deduce that the second year is the key period for the shift of the American ginseng rhizosphere microbial community. Disease aggravation after the third year is related to the deterioration of the rhizosphere microecosystem.
Background Sugarcane is an essential crop for sugar and ethanol production. Immediate processing of sugarcane is necessary after harvested because of rapid sucrose losses and deterioration of stalks. This study was conducted to fill the knowledge gap regarding the exploration of fungal communities in harvested deteriorating sugarcane. Experiments were performed on simulating production at 30 °C and 40 °C after 0, 12, and 60 h of sugarcane harvesting and powder-processing. Results Both pH and sucrose content declined significantly within 12 h. Fungal taxa were unraveled using ITS amplicon sequencing. With the increasing temperature, the diversity of the fungal community decreased over time. The fungal community structure significantly changed within 12 h of bagasse storage. Before stored, the dominant genus (species) in bagasse was Wickerhamomyces (W. anomalus). Following storage, Kazachstania (K. humilis) and Saccharomyces (S. cerevisiae) gradually grew, becoming abundant fungi at 30 °C and 40 °C. The bagasse at different temperatures had a similar pattern after storage for the same intervals, indicating that the temperature was the primary cause for the variation of core features. Moreover, most of the top fungal genera were significantly correlated with environmental factors (pH and sucrose of sugarcane, storage time, and temperature). In addition, the impact of dominant fungal species isolated from the deteriorating sugarcane on sucrose content and pH in the stored sugarcane juice was verified. Conclusions The study highlighted the importance of timeliness to refine sugar as soon as possible after harvesting the sugarcane. The lessons learned from this research are vital for sugarcane growers and the sugar industry for minimizing post-harvest losses.
Background Sugarcane is an essential crop for sugar and ethanol production. Immediate processing of sugarcane is necessary after harvesting because of rapid sucrose losses and deterioration of stalks. This study was conducted to fill the knowledge gap regarding the exploration of fungal communities in harvested deteriorating sugarcane. Experiments were performed on simulating production at 30 ℃ and 40 ℃ after 0, 12, and 60 hours (h) of sugarcane harvesting and powder-processing. Results Both pH and sugar content declined significantly within 12 h. Fungal taxa were unraveled using ITS amplicon sequencing. With the increasing temperature, the diversity of the fungal community decreased over time. The fungal community structure significantly changed within 12 h of bagasse storage. Before storing, the dominant genus (species) in bagasse was Wickerhamomyces (W. anomalus). Following storage, at 30 ℃ and 40°C, Kazachstania (K. humilis) and Saccharomyces (S. cerevisiae) gradually grew, becoming abundant fungi. We found that the bagasse at different temperatures had a similar pattern after storage for the same intervals, indicating that the temperature was the primary cause for the variation of core features. Moreover, the impact of dominant fungal species on sugar content and pH of stored sugarcane juice was investigated. Also, the correlation between top fungal genera and significant environmental factors was assessed. Conclusions The study highlighted the importance of timeliness to refine sugar as soon as possible after harvesting the sugarcane crop. The lessons learned from this research are vital for sugarcane growers and the sugar industry for minimizing postharvest losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.