<p style='text-indent:20px;'>An efficient finite element method for the fourth order problems in a spherical domain will be solved in this paper. Initially, we derive the necessary pole conditions with the intention of overcoming the difficulty of singularity introduced by spherical coordinate transformation. Then the original problem is transformed into a series of equivalent one-dimensional problems by utilizing spherical harmonic functions expansion. Secondly, we introduce some appropriate weighted Sobolev spaces and derive weak form and corresponding discrete form for each one-dimensional fourth order problem based on these pole conditions. In addition, we illustrate the error estimate of the approximate solutions by employing Lax-milgram lemma and approximation property of the cubic Hermite interpolation operator. Eventually, we present the algorithm in detail and show its efficiency through some numerical examples.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.