Freshwater resources in South Africa are under severe pressure from existing anthropogenic impacts and global climate change is likely to exacerbate this stress. This review outlines the abiotic drivers of climate change, focusing on predicted changes in temperature and precipitation. The consequences of global climate change for freshwater ecosystems are reviewed, with effects grouped into those related to water quantity, water quality, habitat and aquatic biological assemblages. Several guiding principles aimed at minimising the potential impact of climate change on freshwater ecosystems are discussed. These guidelines include those focused on water quantity and the maintenance of appropriate environmental flows, integration of global climate change into water quality management, conservation planning for freshwater biodiversity, the promotion of ecosystem resilience, and extending climate change science into policy and public discourse. Proactive assessment and monitoring are seen as key as these will allow for the identification of ecological triggers and thresholds, including thresholds of vulnerability, which may be used to monitor and inform decisions, as well as to improve the ability to forecast based on this knowledge. Setting the stage-abiotic drivers of global climate change General circulation models (GCMs) are a class of computer-driven models for weather forecasting; those that project climate change are commonly called global climate models. GCMs are the core tool for simulating the coupled climate system using physical representations of the atmosphere, land and ocean surface. 6 GCMs simulate the most important features of the climate (i.e. air temperature and rainfall) reliably at a large scale, although, as uncertainties are inherent in CGMs, predictions for rainfall intensity, frequency and spatial distribution have a lower
Water temperature is an important abiotic driver of aquatic ecosystems. It influences many aspects of an organism's existence including its growth, feeding and metabolic rates; emergence; fecundity; behaviour and ultimately survival. All organisms have an optimum temperature range within which they survive and are able to thrive. Determining upper thermal limits provides insight into the relative sensitivity of organisms to elevated temperatures. Thermally sensitive taxa may be useful as bioindicators of thermal alteration and used in the generation of target thermal thresholds for aquatic systems. This study determined the upper thermal limit (CTmax) of a range of aquatic macroinvertebrates from rivers in the south-western Cape, South Africa, using the dynamic Critical Thermal Method. The study focused on the taxonomic level of family as an initial screening tool for ranking thermal sensitivity. Of the 27 families examined, four were both thermally sensitive and highly suitable as test organisms, including Paramelitidae, Notonemouridae, Teloganodidae and Philopotamidae. Five families were moderately sensitive and highly suitable, including Palaemonidae, Heptageniidae, Leptophlebiidae, Corydalidae and Aeshnidae. Preliminary experiments to determine potential sources of variation in CTmax revealed that thermal sensitivity was relatively uniform within families, but that acclimation temperature influenced CTmax. Further investigation of the influence of thermal history, acclimation temperature and rate of temperature change on CTmax is necessary. Target water temperatures for river management will be derived using CTmax data, in addition to longer duration experimental data, which will be linked to in situ temperature data.
Flow patterns in the Great Fish River in the Eastern Cape province of South Africa have changed from being seasonal, with predictable no-flow periods during winter, to perennial following the completion of an inter-basin transfer scheme in 1977 to provide a regular supply of irrigation water. Simulium chutteri (Diptera: Simuliidae) consequently became a problem species of pestilential proportions, due to increased flow volumes and current velocities favouring this species. In this study, aquatic invertebrates were sampled from the stones-in-current biotope with a range of current velocities at three sites on the Great Fish River, with a particular focus on pool/rapid areas favouring S. chutteri. The main aim of this paper was to determine whether critical hydraulic thresholds, including current velocity, could be derived for this species. Knowledge of the hydraulic preferences of S. chutteri is a prerequisite for any integrated control programme which combines larvicidal control with flow manipulation. S. chutteri was found to favour the rapids biotope with current velocities in excess of 90 cms À1, with preferences for higher current velocities increasing with life cycle stage. Additional hydraulic variables, at the scale measured in this study, did not correlate with larval densities. There is potential for more effective long-term control of problem populations of larval blackfly in the Great Fish River through further research on the potential for using constructed in-stream vanes to reduce current velocities in rapids of the river at critical periods of the year (July-October), based on flow duration/current velocity relationships.
Seven grassland sites were sampled at South Africa's Hluhluwe-Umfolozi Game Park boundary with the surrounding land, to assess changes in arthropod diversity in response to land use. Epigaeic arthropods were sampled using pitfall traps and a sweep net. In all, 262 morphospecies were collected, but this is an underestimate of total local species richness. Fifty percent of the species caught were single occurrences. The number of species, families and orders represented at each of the seven sites was not significantly different, but the number of individuals was significantly different. Between-site comparisons, using multivariate statistics, did not reveal any strong site groupings, with all sites being unique. The conclusion is that the reserve boundary does not significantly divide arthropod diversity on a simple inside-versus-outside basis. A major factor influencing the arthropod assemblages was intensity of land use. Indigenous game animals and domestic cattle had the same effect, and it was the intensity of trampling that was important rather than the type of trampling. Human settlements had a major impoverishing effect. The Coleoptera families, Cicindelidae, Staphylindae and Carabidae, were particularly sensitive indicator taxa of land use. Scarabaeidae species were the only group that were severely affected by the fence boundary, simply because their food source, the faeces of large native mammals, was inside, leaving them without resources outside the reserve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.