MicroRNAs (miRNAs) are posttranscriptional modulators of gene expression and play an important role in many developmental processes. We report here that expression of microRNA-145 (miR-145) is low in self-renewing human embryonic stem cells (hESCs) but highly upregulated during differentiation. We identify the pluripotency factors OCT4, SOX2, and KLF4 as direct targets of miR-145 and show that endogenous miR-145 represses the 3' untranslated regions of OCT4, SOX2, and KLF4. Increased miR-145 expression inhibits hESC self-renewal, represses expression of pluripotency genes, and induces lineage-restricted differentiation. Loss of miR-145 impairs differentiation and elevates OCT4, SOX2, and KLF4. Furthermore, we find that the miR-145 promoter is bound and repressed by OCT4 in hESCs. This work reveals a direct link between the core reprogramming factors and miR-145 and uncovers a double-negative feedback loop involving OCT4, SOX2, KLF4, and miR-145.
Mammalian X inactivation turns off one female X chromosome to enact dosage compensation between XX and XY individuals. X inactivation is known to be regulated in cis by Xite, Tsix, and Xist, but in principle the two Xs must also be regulated in trans to ensure mutually exclusive silencing. Here, we demonstrate that interchromosomal pairing mediates this communication. Pairing occurs transiently at the onset of X inactivation and is specific to the X-inactivation center. Deleting Xite and Tsix perturbs pairing and counting/choice, whereas their autosomal insertion induces de novo X-autosome pairing. Ectopic X-autosome interactions inhibit endogenous X-X pairing and block the initiation of X-chromosome inactivation. Thus, Tsix and Xite function both in cis and in trans. We propose that Tsix and Xite regulate counting and mutually exclusive choice through X-X pairing.
Pluripotency of embryonic stem (ES) cells is controlled by defined transcription factors1,2. During differentiation, mouse ES cells undergo global epigenetic reprogramming, as exemplified by X-chromosome inactivation (XCI) whereby one female X-chromosome is silenced to achieve gene dosage parity between the sexes3-5. Somatic XCI is regulated by homologous X-chromosome pairing6,7, counting8-10, and random choice of future active X (Xa) and inactive X’s. XCI and cell differentiation are tightly coupled11, as blocking one process compromises the other8,12 and dedifferentiation of somatic cells to induced pluripotent stem (iPS) cells is accompanied by X-reactivation2. Recent evidence suggests coupling of Xist expression to pluripotency factors13, but how the two are interconnected remains unknown. Here, we show that the Oct414 lies at the top of the XCI hierarchy and regulates XCI by triggering X-chromosome pairing and counting. Oct4 directly binds Tsix and Xite, two regulatory ncRNA genes of the X-inactivation center15,16, and also complexes with XCI trans-factors, Ctcf and Yy117, through protein-protein interactions. Depletion of Oct4 blocks homologous X-chromosome pairing and results in inactivation of both Xs in female cells. Thus, we have identified the first trans-factor that regulates counting and ascribed novel functions to Oct4 during X-chromosome reprogramming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.