BackgroundConservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum.ResultsTo explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection ‘CC240’ with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J’ = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %).ConclusionsA total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-016-0452-8) contains supplementary material, which is available to authorized users.
SummaryCapsaicinoids are unique compounds produced only in peppers (Capsicum spp.). Several studies using classical quantitative trait loci (QTLs) mapping and genomewide association studies (GWAS) have identified QTLs controlling capsaicinoid content in peppers; however, neither the QTLs common to each population nor the candidate genes underlying them have been identified due to the limitations of each approach used. Here, we performed QTL mapping and GWAS for capsaicinoid content in peppers using two recombinant inbred line (RIL) populations and one GWAS population. Whole‐genome resequencing and genotyping by sequencing (GBS) were used to construct high‐density single nucleotide polymorphism (SNP) maps. Five QTL regions on chromosomes 1, 2, 3, 4 and 10 were commonly identified in both RIL populations over multiple locations and years. Furthermore, a total of 109 610 SNPs derived from two GBS libraries were used to analyse the GWAS population consisting of 208 C. annuum‐clade accessions. A total of 69 QTL regions were identified from the GWAS, 10 of which were co‐located with the QTLs identified from the two biparental populations. Within these regions, we were able to identify five candidate genes known to be involved in capsaicinoid biosynthesis. Our results demonstrate that QTL mapping and GBS‐GWAS represent a powerful combined approach for the identification of loci controlling complex traits.
Phytophthora capsici (Leon.) is a globally prevalent, devastating oomycete pathogen that causes root rot in pepper ( Capsicum annuum ). Several studies have identified quantitative trait loci (QTL) underlying resistance to P. capsici root rot (PcRR). However, breeding for pepper cultivars resistant to PcRR remains challenging due to the complexity of PcRR resistance. Here, we combined traditional QTL mapping with GWAS to broaden our understanding of PcRR resistance in pepper. Three major-effect loci ( 5.1 , 5.2 , and 5.3 ) conferring broad-spectrum resistance to three isolates of P. capsici were mapped to pepper chromosome P5. In addition, QTLs with epistatic interactions and minor effects specific to isolate and environment were detected on other chromosomes. GWAS detected 117 significant SNPs across the genome associated with PcRR resistance, including SNPs on chromosomes P5, P7, and P11 that colocalized with the QTLs identified here and in previous studies. Clusters of candidate nucleotide-binding site-leucine-rich repeat (NBS-LRR) and receptor-like kinase (RLK) genes were predicted within the QTL and GWAS regions; such genes often function in disease resistance. These candidate genes lay the foundation for the molecular dissection of PcRR resistance. SNP markers associated with QTLs for PcRR resistance will be useful for marker-assisted breeding and genomic selection in pepper breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.