Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.
Due to its possible role in solid/water carbon isotope exchange, the effect of salinity on radiocarbon dating of groundwater was examined by batch interaction of alluvial sediment and calcite powder with freshwater (Cl– = 100 mg L–1) and Dead Sea (DS) brine (Cl– = 225 g L–1). These 2 water types were spiked with H13CO3– tracer and kept under constant agitation for about 1 yr. Several bottles were respiked twice with the tracer. The uptake of the 13C by calcite was monitored through repeated isotopic measurements of the aqueous solutions, and the effect on 14C groundwater dating was evaluated using a simple transport reaction model. The results indicate that the kinetics of water/calcite isotope exchange start with a very fast initial step followed by a slower one, which was used here to simulate the long-term water/solid exchange in “real” aquifers. The exchange model that best fits the data was homogeneous recrystallization that formed just a very thin layer of newly formed calcite. The estimated recrystallization rates for calcite powder/solution interaction were much smaller for the DS brine than for freshwater: 3 × 10–5 to 7 × 10–6 and 9 × 10–4 to 7 × 10–5 mol m2 yr–1, respectively. The 13C experimental data imply a very small effect of the brine/calcite isotope exchange on the 14C age estimate for the brines within the DS coastal aquifer. However, when calcite recrystallization reaches ∼1% of the solid, the 14C groundwater dating estimates will show aging by ∼10%.
ABSTRACT. This work presents an attempt to date brines and determine flow rates of hypersaline groundwater in the extremely dynamic system of the Dead Sea (DS), whose level has dropped in the last 30 yr by ~20 m. The processes that affect the carbon species and isotopes of the groundwater in the DS area were quantified in order to estimate their flow rate based on radiocarbon and tritium methods. In contrast to the conservative behavior of most ions in the groundwater, the carbon system parameters indicate additional processes. The dissolved inorganic carbon (DIC) content of most saline groundwater is close to that of the DS, but its stable isotopic composition ( 13 C DIC ) is much lower. The chemical composition and carbon isotope mass balance suggest that the low 13 C DIC of the saline groundwater is a result of anaerobic organic matter oxidation by bacterial sulfate reduction (BSR) and methane oxidation. The radiocarbon content ( 14 C DIC ) of the saline groundwater ranged from 86 pMC (greater than the ~82 pMC value of the DS in the 2000s) to as low as 14 pMC. The similarity between the 14 C DIC value and Na/Cl ratio of the groundwater at the DS shore and that of the 1980s DS brine indicates that the DS penetrated to the aquifer at that time. The low 14 C DIC values in some of the saline groundwater suggest the existence of ancient brine in the subaquifer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.