An optical label-free biosensing platform for bacteria detection ( Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO(2)) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO(2) nanostructure displays Fabry-Pérot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO(2) optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in "direct cell capture" onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.
The use of a new class of hybrid nanomaterials as label‐free optical biosensors for bacteria detection (E. coli K12 as a model system) is demonstrated. The hybrids combine a porous SiO2 (PSiO2) optical nanostructure (a Fabry–Pérot thin film) used as the optical transducer element and a hydrogel. The hydrogel, polyacrylamide, is synthesized in situ within the nanostructure inorganic host and conjugated with specific monoclonal antibodies (IgGs) to provide the active component of the biosensor. The immobilization of the IgGs onto the hydrogel via a biotin‐streptavidin system is confirmed by fluorescent labeling experiments and reflective interferometric Fourier transform spectroscopy (RIFTS). Additionally, the immobilized IgGs maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these modified‐hybrids to the target bacteria results in “direct cell capture” onto the biosensor surface. These specific binding events induce predictable changes in the thin‐film optical interference spectrum of the hybrid. Preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations in the range of 103–105 cell mL−1 within minutes.
The influence of thermal oxidation conditions on the performance of porous Si optical biosensors used for label-free and real-time monitoring of enzymatic activity is studied. We compare three oxidation temperatures (400, 600, and 800 °C) and their effect on the enzyme immobilization efficiency and the intrinsic stability of the resulting oxidized porous Si (PSiO2), Fabry-Pérot thin films. Importantly, we show that the thermal oxidation profoundly affects the biosensing performance in terms of greater optical sensitivity, by monitoring the catalytic activity of horseradish peroxidase and trypsin-immobilized PSiO2. Despite the significant decrease in porous volume and specific surface area (confirmed by nitrogen gas adsorption-desorption studies) with elevating the oxidation temperature, higher content and surface coverage of the immobilized enzymes is attained. This in turn leads to greater optical stability and sensitivity of PSiO2 nanostructures. Specifically, films produced at 800 °C exhibit stable optical readout in aqueous buffers combined with superior biosensing performance. Thus, by proper control of the oxide layer formation, we can eliminate the aging effect, thus achieving efficient immobilization of different biomolecules, optical signal stability, and sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.