A family of 2D coordination polymers were successfully synthesized through "bottom-up" techniques using Ni, Cu, Co, and hexaaminobenzene. Liquid-liquid and air-liquid interfacial reactions were used to realize thick (∼1-2 μm) and thin (<10 nm) stacked layers of nanosheet, respectively. Atomic-force microscopy and scanning electron microscopy both revealed the smooth and flat nature of the nanosheets. Selected area diffraction was used to elucidate the hexagonal crystal structure of the framework. Electronic devices were fabricated on thin samples of the Ni analogue and they were found to be mildly conducting and also showed back gate dependent conductance.
The Al K alpha, 1486.6 eV, based x-ray photoelectron spectroscopy (XPS) of Fe 2p and Fe 3p for Fe(III) in Fe2O3 and Fe(II) in FeO is compared with theoretical predictions based on ab initio wavefunctions that accurately treat the final, core-hole, multiplets. The principal objectives of this comparison are to understand the multiplet structure and to evaluate the use of both the 2p and 3p spectra in determining oxidation states. In order to properly interpret the features of these spectra and to use the XPS to provide atomistic insights as well as atomic composition, it is necessary to understand the origin of the multiplet energies and intensities. The theoretical treatment takes into account the ligand field and spin–orbit splittings, the covalent mixing of ligand and Fe 3d orbitals, and the angular momentum coupling of the open shell electrons. These effects lead to the distribution of XPS intensity into a large number of final, ionic, states that are only partly resolved with energies spread over a wide range of binding energies. For this reason, it is necessary to record the Fe 2p and 3p XPS spectra over a wide energy range, which includes all the multiplets in the theoretical treatment as well as additional shake satellites. We also evaluate the effects of differing assumptions concerning the extrinsic background subtraction, to make sure our experimental spectrum may be fairly compared to the theory. We conclude that the Fe 3p XPS provides an additional means for distinguishing Fe(III) and Fe(II) oxidation states beyond just using the Fe 2p spectrum. In particular, with the use of the Fe 3p XPS, the depth of the material probed is about 1.5 times greater than for the Fe 2p XPS. In addition, a new type of atomic many-body effect that involves excitations into orbitals that have Fe f,ℓ = 3, symmetry has been shown to be important for the Fe 3p XPS.
Curcumin (Cur) is a naturally occurring anticancer drug isolated from the plant. It is known to exhibit anticancer properties via inhibiting the STAT3 phosphorylation process. However, its poor water solubility and low bioavailability impede its clinical application. Herein, we used organoplatinum(II) ← pyridyl coordination-driven self-assembly and a cucurbit[8]uril (CB[8])-mediated heteroternary host-guest complex formation in concert to produce an effective delivery system that transports Cur into the cancer cells. Specifically, a hexagon 1, containing hydrophilic methyl viologen (MV) units and 3,4,5-Tris[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]benzoyl groups alternatively at the vertices, has been synthesized and characterized by several spectroscopic techniques. The MV units of 1 underwent noncovalent complexation with CB[8] to yield a host-guest complex 4. Cur can be encapsulated in 4, via a 1:1:1 heteroternary complex formation, resulting in a water-soluble host-guest complex 5. The host-guest complex 5 exhibited 100-fold improved IC values relative to free Cur against human melanoma (C32), melanoma of rodents (B16F10), and hormone-responsive (MCF-7) and triple-negative (MDA-MB231) breast cancer cells. Moreover, strong synergisms of Cur with 1 and 4 with combinatorial indexes of <1 across all of the cell lines were observed. An induced apoptosis with fragmented DNA pattern and inhibited expression of phosphor-STAT3 supported the improved therapeutic potential of Cur in heteroternary complex 5.
Note: This article is part of the JCP Special Topic on Oxide Chemistry and Catalysis.
Two‐dimensional coordination polymers (2DCPs) have been predicted to exhibit exotic properties such as superconductivity, topological insulating behavior, catalytic activity, and superior ion transport for energy applications; experimentally, these materials have fallen short of their expectation due to the lack of synthesis protocols that yield continuous, large crystallite domains, and highly ordered thin films with controllable physical and chemical properties. Herein, the fabrication of large‐area, highly ordered 2DCP thin films with large crystallite domains using chemical vapor deposition (CVD) approaches is described. It is demonstrated that defects and the packing motifs of 2DCP thin films may be controlled by adjusting the vapor–vapor and vapor–solid interactions of the metal and organic linker precursors during the CVD fabrication process. Such control allows for the fabrication of defects‐controlled 2DCP thin films that show either semiconducting or metallic behavior. The findings provide the first demonstration of tuning the electrical properties of sub 100 nm‐thick continuous 2DCP thin films by controlling their electronic landscape through defect engineering. As such, it is determined that large‐area, highly ordered 2DCP thin films may undergo a semiconducting to metallic transition that is correlated to changes in morphology, crystalline domain sizes, crystallite orientation, defect interactions, and electronic structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.