Summary
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.
In an energy-constrained wireless sensor networks (WSNs), clustering is found to be an effective strategy to minimize the energy depletion of sensor nodes. In clustered WSNs, network is partitioned into set of clusters, each having a coordinator called cluster head (CH), which collects data from its cluster members and forwards it to the base station (BS) via other CHs. Clustered WSNs often suffer from the hot spot problem where CHs closer to the BS die much early because of high energy consumption contributed by the data forwarding load. Such death of nodes results coverage holes in the network very early. In most applications of WSNs, coverage preservation of the target area is a primary measure of quality of service. Considering the energy limitation of sensors, most of the clustering algorithms designed for WSNs focus on energy efficiency while ignoring the coverage requirement. In this paper, we propose a distributed clustering algorithm that uses fuzzy logic to establish a trade-off between the energy efficiency and coverage requirement. This algorithm considers both energy and coverage parameters during cluster formation to maximize the coverage preservation of target area. Further, to deal with hot spot problem, it forms unequal sized clusters such that more CHs are available closer to BS to share the high data forwarding load. The performance of the proposed clustering algorithm is compared with some of the well-known existing algorithms under different network scenarios. The simulation results validate the superiority of our algorithm in network lifetime, coverage preservation, and energy efficiency. KEYWORDS coverage preservation, energy efficiency, fuzzy logic, network lifetime, unequal clustering, wireless sensor networks 1 Int J Commun Syst. 2017;30:e3283.wileyonlinelibrary.com/journal/dac
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only.Considering these issues, we propose a distributed multiobjective-based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy-efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.