Wilson disease protein, ATP7B maintains copper homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and fro endolysosomes is not well understood. We investigated the fate of ATP7B, post-copper export. At high copper ATP7B traffics primarily to acidic, active hydrolase (Cathepsin-B) positive endolysosomes and upon subsequent copper chelation, returns to trans-Golgi network. At high copper, ATP7B co-localizes with endolysosomal markers and with core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to TGN that was rescued by overexpressing wtVPS35. Overexpressing mutants of retromer complex associated proteins, Rab7 and COMMD1 yielded similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in-vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B and it is dependent upon intracellular copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.