This paper discusses different air management technologies for fuel cell systems. Two different types of compressors are analyzed for Proton-exchange membrane fuel cells (PEMFC). Some important criteria are analyzed thoroughly for the selection of turbo compressor among different types of compressors illustrated with the help of matrix representations. The impacts of various input parameters for Fuel Cell (FC) are also explained thoroughly. Later the numerical modeling of an automobile fuel cell system using a high speed turbo-compressor for air supply is explained. The numerical model incorporates the important input parameters related with air and hydrogen. It also performed energy and mass balances across different components such as pump, fan, heat-exchanger, air compressor and also keeps in consideration the pressure drop across the flow pipes and various mechanical parts. The model is solved to obtain the characteristics of the FC system at different operating conditions. Therefore, it can be concluded that the high speed turbo compressor with a turbo-expander can have significant effects on the overall system power and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.