Indoor and outdoor air samples were simultaneously collected from the largest office building in Jahra City during 57 sampling events between August 2010 and November 2011. The collected samples were analyzed for 78 volatile organic compounds (VOCs) using CO2 cryogenic preconcentration and GC/MS analysis. Of the 48 VOCs detected, the toluene concentration exceeded the recommended air quality guidelines in 2% of the outdoor samples, and the benzene concentration exceeded these guidelines in 17.5% and 19.5% of the indoor and outdoor samples, respectively. Industrial and vehicle emissions were negligible. Emissions from oil fields, various crude oil production and flaring activities in the north were major sources of VOCs in the ambient air. The VOC profiles; seasonal, monthly, and weekday/weekend variations; and their effects on ozone formation potentials are discussed. The results indicate that the most abundant class of chemical compounds was oxygenated compounds, of which acetone, acetaldehyde, propanal, methanol, ethanol, and 2-propanol were the most dominant species. Propene and toluene were the most abundant species of aliphatic and aromatic hydrocarbons, respectively.
A total of 800 indoor (I) and outdoor (O) air samples from eight large office buildings (LOBs) were analyzed for 78 VOCs using the latest sampling and preconcentration technology. Of these VOCs, 73 and 66 were detected in the I and O samples, respectively, at various levels and proportions. The I/O ratios were .1, and ethanol exhibited the highest ratio of 14.7. The levels of aliphatic hydrocarbons were higher in LOBs located in the southern region of Kuwait, where the majority of industrial activities are located. By contrast, these levels were significantly lower in LOBs located in the northern and far northern regions, where industrial activities are absent. There was evidence of CFCs leaking from HVAC systems in several of the LOBs. BTEX inter-species ratios suggest that vehicular emissions contributed less to the outdoor air composition at the LOB at Jahra compared to other LOBs. Alcohols and carbonyls were the first and second most abundant classes of chemicals, respectively, in the VOC mixtures at the LOBs. None of the VOCs exceeded the recommended air quality limits.
Household desalinated drinking water samples collected from outdoor points and from indoor consumption points at 99 locations representing more than 95% of the residential areas in Kuwait were analyzed for 25 trace elements and water quality parameters. Only Al, Cr, Co, Cu, Fe, Pb, Ni, and Zn were found to be over-represented at the consumption point compared with the outdoor point, with wide variations among the sampling locations and elements. The highest increases were observed for Fe (135%) and Zn (123%), followed by Pb (69%), Co (58%), Cu (42%), Cr (31%), and Al (30%), and the lowest increase was observed for Ni (19%). In most cases, the increases in Cu, Fe, and Zn were inversely proportional to the conductivity and directly proportional to the Cl– concentration. In the outdoor samples, only Fe exceeded the US-EPA guideline (in 3% of the outdoor samples taken), whereas Fe, Pb, and Ni exceeded the US-EPA and WHO guidelines in 8.5%, 0.3%, and 1% of the indoor consumption point samples, respectively. Thus, leaching from household utilities may cause health concerns for consumers of drinking water in Kuwait. The increases in Fe were the highest in the summer (240%), and in this regard, Fe exhibited the greatest difference between summer and winter (the increase was 139% higher in the summer). The results of the present study may be useful for water production authorities and consumers in Kuwait and suggest the use of alternative new pipes with more resistant internal coatings and connecting techniques
Epidemiological studies demonstrate a positive association between daily changes in concentrations of ambient airborne particulate matter (PM) and adverse respiratory and cardiovascular health effects. However, physicochemical properties of PM can vary greatly across geographical, atmospheric, and temporal conditions and influence the relative toxicity of airborne PM. The purpose of this study was to investigate the adverse pulmonary and cardiovascular health effects of ambient PM collected from discrete sampling sites in Kuwait during dust storm (DS) and non-dust storm (NDS) conditions. Collected dust samples were characterized for their chemical composition using atomic absorption, GC–MS, and HPLC–MS analyses. Male BALB/cJ mice were exposed to 100 µg of either NDS or dust storm (DS) PM in 50 µl of PBS by oropharyngeal aspiration. Lung function was measured and bronchoalveolar lavage was conducted at 1, 7, and 14 days post-exposure. Ischemia–reperfusion injury was performed 24 h after exposures by obstructing the left main coronary artery approximately 4 mm distal to its origin for 20 min, followed by 2 h. of reperfusion. Exposure to either NDS or DS PM resulted in airway hyperresponsiveness to acetylcholine compared to PBS controls. Total protein and cells in BAL fluid were elevated in both dust groups one day after exposure; however, DS PM induced a greater increase in cell numbers than did NDS PM, particularly in neutrophils, eosinophils, and lymphocytes. Representative lung sections exhibited positive staining for mucus in large airways at 7 days which resolved by 14 days in dust storm-exposed mice but persisted in NDS-exposed animals. Our findings suggest that NDS PM may be more effective in producing an adaptive immune response, while the early inflammation induced by DS PM may better resolve. We also observed a prolonged airway mucus response after exposure to NDS PM, suggesting it may produce more asthma-like features than dust storm PM. PM-induced changes to cardiac ischemia–reperfusion injury were not observed in this study. The lack of cardiovascular response may have been due to the limited exposure and single time point used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.