The presence of a novel 38 kDa protein that is tyrosine phosphorylated in human neutrophils, a terminally differentiated cell, upon stimulation of these cells with low concentrations of lipopolysaccharide (LPS) in combination with serum has been demonstrated. This 38 kDa protein was identified as the mammalian homologue of HOG1 in yeast, the p38 mitogen-activated protein (MAP) kinase. This conclusion is based on the experimental findings that anti-phosphotyrosine (anti-PY) antibody immunoprecipitates a 38 kDa protein that is recognized by anti-p38 MAP kinase antibody, and conversely, anti-p38 MAP kinase antibody immunoprecipitates a 38 kDa protein that can be recognized by anti-PY antibody. Moreover, this tyrosine phosphorylated protein is found associated entirely with the cytosol. It was also found that this p38 MAP kinase is activated following stimulation of these cells with low concentrations of LPS in combination with serum. This conclusion is based on three experimental findings. First, soluble fractions isolated from LPS-stimulated cells phosphorylate heat shock protein 27 (hsp27) in an in vitro assay, and this effect is not inhibited by protein kinase C and protein kinase A inhibitor peptides. This effect is similar to the effect produced by the commercially available phosphorylated and activated MAPKAP kinase-2 (MAP kinase activated protein kinase-2). Secondly, a 27 kDa protein that aligns with a protein recognized by anti-hsp27 antibody is phosphorylated upon LPS stimulation of intact human neutrophils prelabelled with radioactive phosphate. Lastly, immune complex protein kinase assays, using [gamma-32P]ATP and activating transcription factor 2 (ATF2) as substrates, showed increased p38 MAP kinase activity from LPS-stimulated human neutrophils. The phosphorylation and activation of this p38 MAP kinase can be affected by both G-protein-coupled receptors such as platelet-activating factor (PAF) and non-G-protein-coupled receptors such as the cytokine-coupled receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumour necrosis factor alpha (TNF-alpha). The effect of low concentrations of PAF is greatly increased in cells pretreated with LPS. The tyrosine phosphorylation of the p38 MAP kinase is not restricted to stimuli that mediate their actions through membrane-associated receptors, but it can be affected by agents that bypass membrane-associated receptors such as the protein translation blocker anisomycin. While anisomycin is known to increase the tyrosine phosphorylation of the 54 kDa SAPK (stress-activated protein kinase), this is the first report that shows that anisomycin also tyrosine phosphorylates the p38 MAP kinase. Cytokine receptors that increase the tyrosine phosphorylation and activation of the erk1 and erk2 MAP kinases have less effect on this p38 MAP kinase than those that do not affect the erk1 and erk2 MAP kinases. The possible role of the p38 MAP kinase in the phosphorylation of cytosolic phospholipase A2 is discussed.
Incubation of human neutrophils with 500 pM granulocyte-macrophage colony-stimulating factor (GM-CSF) results in a rapid and time-dependent increase in the phosphorylation of cytosolic phospholipase A2 (cPLA2), which was reflected in a slower electrophoretic mobility of the enzyme. The GM-CSF-induced phosphorylation of cPLA2 was accompanied by a parallel and time-dependent increase in the enzyme activity. Preincubation of neutrophils with the tyrosine kinase inhibitor genistein caused inhibition of the GM-CSF-stimulated phosphorylation and activity of cPLA2. Immunoprecipitation of the enzyme following incubation of neutrophils with [32P]Pi shows that cPLA2 is phosphorylated by GM-CSF. Potato acid phosphatase caused dephosphorylation of the enzyme, indicating that cPLA2 is indeed phosphorylated by GM-CSF. The subcellular distribution of cPLA2 in GM-CSF-stimulated neutrophils revealed that the enzyme resides almost completely in the cytosolic fraction. Addition of Ca2+ to the lysis buffer before homogenization results in the translocation of the phosphorylated and the dephosphorylated forms of the enzyme to the membranes. Translocation of cPLA2 was also achieved after incubation with 0.1 microM N-formylmethionyl-leucyl-phenyl-alanine (fMLP) after GM-CSF stimulation and when neutrophils were challenged with the Ca2+ ionophore A23187. EDTA and EGTA were unable to solubilize the translocated enzyme from the neutrophil membranes, indicating that cPLA2 is attached to the membranes by strong bonds and not merely due to ionic forces exerted by Ca2+. The inability of GM-CSF to promote arachidonic acid mobilization is probably due to the fact that GM-CSF does not cause an increase in intracellular Ca2+, which is necessary for the translocation of the enzyme to the membranes where its substrate(s) reside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.