We report the cooling-induced crystallization of layered two-dimensional lead halide perovskites with controllable inorganic quantum-well thickness (n = 1, 2, 3, 4), organic spacer chain length (butyl-, pentyl-, hexylammonium), A-site cation (methylammonium, formamidinium), and halide anion (iodide, bromide). We report crystal structures for the iodide family as a function of these compositional parameters, and across their temperature dependent phase transitions. In general, lower symmetry crystal structures, increasing extents of organic-spacer interdigitation, and increasing organic-spacer corrugation tilts are observed at low temperature. In addition, greater structural distortions are seen in lead halide octahedra closest to the organic spacer layer, and larger-n structures exhibit periodic variation in Pb-I bond lengths. We also provide detailed guidance regarding the combination of synthetic parameters needed to achieve phase-pure crystals of each composition, and discuss difficulties encountered when trying to synthesize particular members of the 2D perovskite family containing formamidinium or cesium as the A-site cation. These results provide a foundation for understanding structural trends in 2D lead halide perovskites and the effect these trends have on their thermal, electrical, and optical properties.
Organic−inorganic perovskites have been shown to have excellent optoelectronic properties. Further, layered perovskites have been demonstrated, utilizing quantum confinement to achieve emission blueshifted from the bulk band gap. Here, we tune this blue-shift to build LEDs that span the visible spectrum. We demonstrate that electroluminescence from red-shifted layers dominates emission from mixed-thickness devices and that the addition of excess ligand is necessary to drive emission toward blue-shifted layers. By tuning the thickness of the layers, we build LEDs with blue emission utilizing the lead bromide system and orange emission utilizing the lead iodide system. Finally, we demonstrate that these materials suffer reversible degradation under an applied electric field. The spectrally narrow emission, combined with the favorable electronic properties of perovskite materials and access to shorter emission wavelengths through quantum confinement, demonstrates the promise of these materials as a new platform for low-cost, high-performance light-emitting devices.
Broadband emission in lead iodide 2D perovskites has been alternately attributed to self-trapped excitons (STEs) or permanent structural defects and/or impurities. Here, we investigate six different multilayered (n > 1) 2D lead iodide perovskites as a function of sample temperature from 5 to 300 K. We distinguish shallow defect-associated emission from a broad near-infrared (NIR) spectral feature, which we assign to an STE through subgap photoexcitation experiments. When we varied the thickness (n = 2, 3, 4), A-site cation (methylammonium vs formamidinium), and organic spacer (butylammonium vs hexylammonium vs phenylethylammonium), we found that the temperature dependence of broad NIR emission was strongly correlated with both the strength of electron–phonon coupling and the extent of structural deformation of the ground-state lattice, strongly supporting the assignment of this spectral feature to an STE. However, the extent to which formation of these STEs is intrinsic versus defect-assisted remains open to debate.
Time-resolved laser spectroscopy was used to measure the dynamics of chargecarrier trapping and detrapping in PbS quantum dot solids. These measurements, together with electron microscopy and numerical simulations, point toward fused quantum dot dimers as the primary source of optically active trap states in PbS quantum dot solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.