The synthesis of Au x Cu (1Àx) nanoalloys (NAs) by a two-phase method employing amines acting simultaneously as coordinating ligands, phase transfer agents as well as nanoparticle (NP) stabilisers, is presented. The value of x was varied between 0 and 1 and dodecylamine (DDA) and hexadecylamine (HDA) were used as ligands. The nanoparticles were characterised by elemental analysis, UV-vis and IR spectroscopies, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning TEM (STEM) and X-ray photoelectron spectroscopy (XPS). Alloying with Au imparts significant stability to Cu nanoparticles. Interestingly, some degree of surface segregation for Cu in the synthesised Au x Cu (1Àx) NAs is revealed from the TEM analysis, contrary to expectations based on previously calculated segregation energies. XRD analysis demonstrates a high degree of crystallinity of the cores although the crystallite sizes obtained from the Scherrer equation are smaller than TEM measurements. A mild heat treatment is sufficient to enhance the overall particle crystallinity resulting in crystallite size estimates from XRD comparable to those obtained from TEM.
Investigation of Glucose oxidation at Gold Nanoparticles deposited at Carbon Investigation of Glucose oxidation at Gold Nanoparticles deposited at Carbon Nanotubes modified Glassy Carbon Electrode by Theoretical and Experimental Nanotubes modified Glassy Carbon Electrode by Theoretical and Experimental Methods. Methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.