Representation and classification of color texture generate considerable interest within the field of computer vision. Texture classification is a difficult task that assigns unlabeled images or textures to the correct labeled class. Some key factors such as scaling and viewpoint variations and illumination changes make this task challenging. In this paper, we present a new feature extraction technique for color texture classification and recognition. The presented approach aggregates the features extracted from local binary patterns (LBP) and convolution neural network (CNN) to provide discriminatory information, leading to better texture classification results. Almost all of the CNN model cases classify images based on global features that describe the image as a whole to generalize the entire object. LBP classifies images based on local features that describe the image’s key points (image patches). Our analysis shows that using LBP improves the classification task when compared to using CNN only. We test the proposed approach experimentally over three challenging color image datasets (ALOT, CBT, and Outex). The results demonstrated that our approach improved up to 25% in the classification accuracy over the traditional CNN models. We identify optimal combinations for each dataset and obtain high classification rates. The proposed approach is robust, stable, and discriminatory among the three datasets and has shown enhancement in classification and recognition compared to the state-of-the-art method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.