The optimization of mechanical properties of the welded joints requires a statistical approach such as Taguchi experimental designs associated with experimental techniques and laboratory characterizations. The aim of this work is to propose a method of optimization of the mechanical performances of a TIG dissimilar welding of two grades of steels: a high strength low alloy steel X70 and an austenitic stainless steel 304L. The experimental designs were chosen according to the Taguchi method L9. The metallurgical characterization includes optical microscopy, SEM microscopy, EDX analyses and mechanical tests to establish a relationship between welding parameters, microstructures and mechanical behavior in different zones of a dissimilar weld joint. The results showed that the hardness is more strongly related to microstructural evolution than tensile strength of dissimilar joint. It was found that gas flow is the main significant TIG welding parameter affecting dissimilar weld characteristics.
In this study the effect of the Titanium and aluminum powder addition on microstructure and mechanical properties of AISI 430 ferritic stainless steel welds produced by gas tungsten arc welding was investigated. It’s observed that the addition of aluminium (Al) or titanium (Ti) reducing the grains size, increase the equiaxed grains fraction and improve the mechanical properties with varying degrees. While the addition of mixture (Al+Ti) leads to better improving in mechanical properties and reducing of grains size up to 85 %. The details of tensile tests, optical microscopic observations, microhardness, tensile test and Scanning electron microscopy (SEM) fractography, are discussed.
The present study, aims to investigate, under welding parameters of current, voltage and gas flow, the effects of welding parameters on tensile strength of AISI 304L ASS welds using response surface methodology (RSM). The RSM and variance analysis (ANOVA) were used to check the validity of quadratic regression model and to determine the significant parameter affecting tensile strength of welds. Hence, ANOVA clearly revealed that the contribution of each factor is 71.40% of voltage, 19.2% of current and 8.30% of gas flow. It was found that combined contributions of welding parameters contributes significantly to the metallurgical changes by varying fractions, morphology and grain size of metallic compounds. Furthermore, the optimum automatic welding conditions lead to produce the best possible weld quality in the range of our experiment using desirability function approach for single response of RSM optimization factors, in which it concluded that tensile strength components are influenced principally by voltage. Finally, the ranges for best welding conditions are proposed for serial industrial production.
This paper proposes an approach for measuring the mechanical properties by non-destructive testing techniques using eddy current testing (ECT), for a welded and heat-treated microalloyed material (X70) dedicated to hydrocarbon transport. This study offers a new measurement method based on linear approach, to expect mechanical property in microstructures by using Non-destructive testing (ECT) that can apply to mechanical systems, materials, weldments, etc. The result show that hardness measurements are in broad have the same trend with impedance function which depend of heat treatment variable applied to weld joint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.