Al Wahbah Crater is one of the largest and deepest Quaternary maar craters in the Arabian Peninsula. It is NW-SE-elongated, ∼2.3 km wide, ∼250 m deep and surrounded by an irregular near-perpendicular crater wall cut deeply into the Proterozoic diorite basement. Very few scientific studies have been conducted on this unique site, especially in respect to understanding the associated volcanic eruption processes. Al Wahbah and adjacent large explosion craters are currently a research subject in an international project, Volcanic Risk in Saudi Arabia (VORiSA). The focus of VORiSA is to characterise the volcanic hazards and eruption mechanisms of the vast volcanic fields in Western Saudi Arabia, while also defining the unique volcanic features of this region for use in future geoconservation, geoeducation and geotourism projects. Al Wahbah is inferred to be a maar crater that formed due to an explosive interaction of magma and water. The crater is surrounded by a tephra ring that consists predominantly of base surge deposits accumulated over a pre-maar scoria cone and underlying multiple lava flow units. The tephra ring acted as an obstacle against younger lava flows that were diverted along the margin of the tephra ring creating unique lava flow surface textures that recorded inflation and deflation processes along the margin of the post-maar lava flow. Al Wahbah is a unique geological feature that is not only a dramatic landform but also a site that can promote our understanding of complex phreatomagmatic monogenetic volcanism. The complex geological features perfectly preserved at Al Wahbah makes this site as an excellent geotope and a potential centre of geoeducation programs that could lead to the establishment of a geopark in the broader area at the Kishb Volcanic Field.
Harrat Rahat (<10 Ma) is one of the largest volcanic fields on western Arabia. In the north of the field, some of the youngest volcanic centres evolved through either point-like, complex or multiple aligned vents (i.e. along fissures), and have pyroclastic cones, lapilli fall deposits and/or lava flows associated with them. The products reflect dominantly Hawaiian eruptions, and only one centre experienced phreatomagmatism. Results from new 3He surface-exposure dating provide constraints on stratigraphy of the youngest (<0.3 Ma) products.The rocks are compositionally alkali-basalt and hawaiite, with intra-plate basalt (prevalent mantle (PREMA)) affinity. Each eruption displays a distinct whole-rock composition in an overall linear trend. We suggest that the magma source for each centre is similar, and that composition of the products is different due to different degrees of fractionation. In a single eruption, the magma that reaches the surface first is the least evolved, with the most evolved magma erupting last. We also found that the most primitive magmas erupt less explosively. We think that the degree of magma evolution might correlate with ascent times, assuming that the more evolved magma spent more time en route. We suggest that magma ascent time is likely to be longer than that of other more primitive intra-plate basalts.Supplementary material: Whole-rock chemistry results, mineral chemistry results and fractional crystallization modeling data are available at https://doi.org/10.6084/m9.figshare.c.3488988
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.