Using a 796-basepair cDNA fragment obtained from a mouse pituitary library we have screened two mouse insulinoma libraries and isolated a full-length cDNA clone (2516 basepairs; 753 amino acids), designated mPC1. The cDNA sequence of mPC1 codes for a protein containing 753 amino acids and three potential N-glycosylation sites. This cDNA encodes a putative novel subtilisin-like proteinase, exhibiting within its presumed catalytic domain 64%, 55%, and 47% amino acid sequence identity to the recently characterized candidate prohormone convertases human Furin, mouse PC2, and yeast Kex2 gene products, respectively. An identical sequence to mPC1 was derived from a cDNA library of mouse corticotroph AtT-20 tumor cells. An ArgGlyAsp tripeptide identical to the recognition sequence of integrins was observed in the structures of the mammalian PC1, PC2, and Furin. In situ hybridization results demonstrated a distinct localization of the mPC1 and mPC2 transcripts in pituitary and brain. Thus, whereas both mPC1 and mPC2 are found in the intermediate lobe of the pituitary, only mPC1 is easily detected in the anterior lobe. In extrahypothalamic regions of the brain, including cortex, hippocampus, thalamus, and spinal cord, mPC2 transcripts predominate over mPC1. Both mRNAs are found in only a fraction of hypothalamic neurons, with greater abundance of mPC1 over mPC2 in the supraoptic nucleus. The genes coding for mPC1 and mPC2 map to the murine chromosomes 13 (band 13c) and 2 (2F3-2H2 region), respectively.
Nerve growth factor (NGF) is released through the constitutive secretory pathway from cells in peripheral tissues and nerves where it can act as a target-derived survival factor. In contrast, brain-derived neurotrophic factor (BDNF) appears to be processed in the regulated secretory pathway of brain neurons and secreted in an activity-dependent manner to play a role in synaptic plasticity. To determine whether sorting differences are intrinsic to the neurotrophins or reflect differences between cell types, we compared NGF and BDNF processing in cultured hippocampal neurons using a Vaccinia virus expression system. Three independent criteria (retention or release from cells after pulse-chase labeling, depolarization-dependent release, and immunocytochemical localization) suggest that the bulk of newly synthesized NGF is sorted into the constitutive pathway, whereas BDNF is primarily sorted into the regulated secretory pathway. Similar results occurred with AtT 20 cells, including those transfected with cDNAs encoding neurotrophin precursor-green fluorescent protein fusions. The NGF precursor, but not the BDNF precursor, is efficiently cleaved by the endoprotease furin in the trans-Golgi network (TGN). Blocking furin activity in AtT 20 cells with alpha1-PDX as well as increasing the expression of NGF precursor partially directed NGF into the regulated secretory pathway. Therefore, neurotrophins can be sorted into either the constitutive or regulated secretory pathways, and sorting may be regulated by the efficiency of furin cleavage in the TGN. This mechanism may explain how neuron-generated neurotrophins can act both as survival factors and as neuropeptides.
The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown in Drosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Split genes. Genetic evidence has also implicated the kuzbanian gene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 a HES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-induced HES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenous HES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.