Three novel pyrazolo-[4,3-e][1,2,4]triazolopyrimidine derivatives (1, 2, and 3) were designed, synthesized, and evaluated for their in vitro biological activity. All three compounds exhibited different levels of cytotoxicity against cervical and breast cancer cell lines. However, compound 1 showed the best antiproliferative activity against all tested tumor cell lines, including HCC1937 and HeLa cells, which express high levels of wild-type epidermal growth factor receptor (EGFR). Western blot analyses demonstrated that compound 1 inhibited the activation of EGFR, protein kinase B (Akt), and extracellular signal-regulated kinase (Erk)1/2 in breast and cervical cancer cells at concentrations of 7 and 11 µM, respectively. The results from docking experiments with EGFR suggested the binding of compound 1 at the ATP binding site of EGFR. Furthermore, the crystal structure of compound 3 (7-(4-bromophenyl)-9-(pyridin-4-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine) was determined by single crystal X-ray analysis. Our work represents a promising starting point for the development of a new series of compounds targeting EGFR.
ZnO nanoparticles (ZnO NPs) were synthesized using hydrothermal and sol-gel techniques using zinc acetate dihydrate (Zn (CH3COO)2.2H2O) as a row material and methanol as a solvent. The structural properties of ZnO NPs were studied using EDX, XRD, TEM, and the optical properties were characterized using UV-VIS and PL spectroscopies. The synthesized ZnO NPs showed high purity and revealed a wurtzite (hexagonal) crystal structure with particle size (D) ranged from 25 nm to 28 nm. The UV-VIS absorption spectra of ZnO NPs samples and sensitizing dyes were performed. The obtained ZnO NPs exhibited the direct optical bandgap 3.15 eV. Dye-sensitized solar cells (DSSCs) were fabricated using synthesized ZnO NPs as a semiconducting layer, which was dyed with different low cost dyes such as Eosin B (EB), Eosin Y (EY) and Rhodamine B (RB) that was used to sensitize the photoanode (ZnO NPs). The experimental results showed a significant efficiency for the fabricated DSSCs of synthesized ZnO NPs via sol gel technique comparing to hydrothermal technique. The EY dye exhibited the best performance among others, where a conversion efficiency showed a noteworthy improvement from 0.12 to 1.08 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.