The next generation 6G communication network is typically characterized by the full connectivity and coverage of Users Equipment (UEs). This leads to the need for moving beyond the traditional twodimensional (2D) coverage service to the three-dimensional (3D) full-service one. The 6G 3D architecture leverages different types of non-terrestrial or aerial nodes that can act as mobile Base Stations (BSs) such as Unmanned Aerial Vehicles (UAVs), Low Altitude Platforms (LAPs), High-Altitude Platform Stations (HAPSs), or even Low Earth Orbit (LEO) satellites. Moreover, aided technologies have been added to the 6G architecture to dynamically increase its coverage efficiency such as the Reconfigurable Intelligent Surfaces (RIS). In this paper, an enhanced Computational Intelligence (CI) algorithm is introduced for optimizing the coverage of UAV-BSs with respect to their location from RIS in the 3D space of 6G architecture. The regarded problem is formulated as a constrained 3D coverage optimization problem. In order to increase the convergence of the proposed algorithm, it is hybridized with a crossover operator. For the validation of the proposed method, it is tested on different scenarios with large-scale coordinates and compared with many recent and hybrid CI algorithms, as Slime Mould Algorithm (SMA), Lévy Flight Distribution (LFD), hybrid Particle Swarm Optimization and Gravitational Search Algorithm (PSOGSA), the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and hybrid Grey Wolf Optimizer and Cuckoo Search (GWOCS). The experiment and the statistical analysis show the significant efficiency of the proposed algorithm in achieving complete coverage with a lower number of UAV-BSs and without constraints violation.INDEX TERMS 6G technology, computational intelligence, non-terrestrial base stations, reconfigurable intelligent surfaces, three-dimensional coverage optimization problem.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre -including this research content -immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.