Polymers are often added with water as a viscosifier to improve oil recovery from hydrocarbon reservoirs. Polymer might be lost wholly or partially from the injected polymer solution by adsorption on the grain surfaces, mechanical entrapment in pores, and hydrodynamic retention in stagnant zones. Therefore, having a clear picture of polymer losses (and retention) is very important for designing a technically and economically successful polymer flood project. The polymer adsorption and mechanical entrapment are discussed more in depth in the literature, though the effect of hydrodynamic retention can be just as significant. This research investigates the effect of the hydrodynamic retention for low and high molecular weight (AN 113 VLM and AN 113 VHM) sulfonated polyacrylamide polymer. Two high permeability Bentheimer core plugs from outcrops were used to perform polymer corefloods. Polymer retention was first determined by injecting 1 cm3/min, followed by polymer core floods at 3, 5, and 8 cm3/min to determine the hydrodynamic retention (incremental retention). A higher molecular weight polymer (AN 113 VHM) showed higher polymer retention. In contrast, hydrodynamic retention for lower molecular weight (AN 113 VLM) was significantly higher than that of the higher molecular weight polymer. Other important observations were the reversibility of the hydrodynamic retention, no permanent permeability reduction, the shear thinning behavior in a rheometer, and shear thickening behavior in core floods.
Three-dimensional (3D) facies and petrophysical models were generated from previously published data of carbonate strata in the Dam Formation (eastern Saudi Arabia) to quantitatively investigate, describe, understand, model, and predict the permeability anisotropy in tidal flat carbonate on the basis of a sequence stratigraphic framework. The resulting 3D models were used to conduct fluid flow simulations to demonstrate how permeability anisotropy influences the production of hydrocarbons and ultimately affects decisions concerning future drilling in the exploration and development of carbonate reservoirs with tidal flat strata. The constructed 3D facies model consists of four lithofacies associations, two of which are grain-dominated associations and two of which are mud-dominated associations. These lithofacies associations vary spatially in four reservoir zones (zones 1 to 4), which represent two fourth-order sequences in the uppermost part of the Dam Formation. Zones 1 and 3 consist of transgressive parasequences, and zones 2 and 4 consist of the regressive parasequences of these sequences. The 3D porosity and permeability models have a coherent match with the distribution of the lithofacies and the stratigraphic framework of the Dam Formation. The results suggest that the permeability anisotropy in zones 1 and 3 is controlled by the occurrence of the grain-dominated lithofacies associated with tidal flat channels. This lithofacies association overlies the sequence boundaries of sequences 1 and 3, forms reservoir bodies with relatively high permeability values, and is elongated perpendicular to the shoreline of the depositional environment. In contrast, permeability anisotropy in zones 2 and 4 is thought to be controlled by the occurrence of the grain-dominated lithofacies associated with the oolitic shoal. This lithofacies association overlies the maximum flooding surface of sequences 2 and 4, forms reservoir bodies with relatively high permeability values, and is elongated parallel to the shoreline of the depositional environments. Fluid flow simulation results suggest that the trend in hydrocarbon production from the constructed 3D models depends on permeability anisotropy in each reservoir zone. Thus, recognizing trends in permeability anisotropy, which can be predicted using sequence stratigraphy, could help to identify potential areas for future drilling.
Three-dimensional (3D) facies and petrophysical models were generated from previously published data of carbonate strata in the Dam Formation (eastern Saudi Arabia) to quantitatively investigate, describe, understand, model, and predict the permeability anisotropy of tidal flat carbonate within a sequence stratigraphic framework. The resulting 3D models were used to conduct fluid flow simulations to demonstrate how permeability anisotropy influences the production of hydrocarbons and ultimately affects decisions concerning future drilling in the exploration and development of carbonate reservoirs that have tidal flat strata. The constructed 3D facies model consists of four lithofacies associations, two of which were grain-dominated associations and two of which were mud-dominated associations. These lithofacies associations varied spatially in four reservoir zones (zones 1 to 4), which represent two fourth-order sequences in the uppermost part of the Dam Formation. Zones 1 and 3 consist of transgressive parasequences, and zones 2 and 4 consist of the regressive parasequences of these sequences. The 3D porosity and permeability models have a coherent match with the distribution of the lithofacies and the stratigraphic framework of the Dam Formation. The results suggested that the permeability anisotropy in zones 1 and 3 is controlled by the occurrence of the grain-dominated lithofacies associated with tidal flat channels. This lithofacies association overlies the sequence boundaries of sequences 1 and 3, forms reservoir bodies with relatively high permeability values, and is elongated perpendicular to the shoreline of the depositional environments. In contrast, permeability anisotropy in zones 2 and 4 is thought to be controlled by the occurrence of the grain-dominated lithofacies associated with the oolitic shoal. This lithofacies association overlies the maximum flooding surface of sequences 2 and 4, forms reservoir bodies with relatively high permeability values, and is elongated parallel to the shoreline of the depositional environments. Fluid flow simulation results suggested that the trend in hydrocarbon production from the constructed 3D models depends on permeability anisotropy in each reservoir zone. Thus, recognizing trends in permeability anisotropy, which might be predicted using sequences stratigraphy, could help to identify potential areas for future drilling.
The purpose of this study is to describe and model a modern fluvial channel that cut gently dipping alluvial plain (in eastern Sudan) and changes its morphology from upstream to downstream. Ultimately this study explores the spatial variability in geomorphological characters of this channel with the topography of the alluvial plain and how such variability controls channel connectivity and reservoir architecture. The workflow of this study integrates remote sensing, reservoir modeling, and fluid flow simulation. Satellite images (8 panels of a 160-km fluvial channel) provide means to capture channel morphology (width, sinuosity, and amalgamation), and were used to produce realistic two-dimensional (2D) geo-cellular models. Stacked on top of each other from upstream to downstream, the 2D models provide a three-dimensional (3D) geo-cellular model that simulates the horizontal variability in the channel morphology vertically. Within this 3D model, fluvial channels were assigned to clean sandstone facies (relatively higher porosity and permeability), and flood plains were assigned to mudstone facies (relatively lower porosity and permeability). Systematic penetration of the 3D models by 27 pseudo wells shows a low chance of penetrating the channel sandstone by these wells―only 8 out of the 27 pseudo wells (∼ 30%) penetrate the channel sandstones. The opportunity of penetrating channel sandstone increases toward the upstream area (lower zones in the 3D models), where the channel has a wider width and low sinuosity. The penetrated thickness also increases toward the upstream area. These trends affect the oil's flow properties, which is presumed to fill the channel sandstone in the 3D model. Modeling and understanding such horizontal channel variability provide perspectives into the nature and controls on complex architecture patterns of fluvial reservoirs in rift basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.