Caveolae, the specialized invaginations of plasma membranes, formed sealed vesicles with outwards-orientated cytosolic surface after isolation from primary human adipocytes. This morphology allowed differential, vectorial identification of proteins at the opposite membrane surfaces by proteolysis and MS. Extracellular-exposed caveolae-specific proteins CD36 and copper-containing amine oxidase were concealed inside the vesicles and resisted trypsin treatment. The cytosol-orientated caveolins were efficiently digested by trypsin, producing peptides amenable to direct MS sequencing. Isolation of peripheral proteins associated with the cytosolic surface of caveolae revealed a set of proteins that contained nuclear localization signals, leucine-zipper domains and PEST (amino acid sequence enriched in proline, glutamic acid, serine and threonine) domains implicated in regulation by proteolysis. In particular, PTRF (polymerase I and transcript release factor) was found as a major caveolae-associated protein and its co-localization with caveolin was confirmed by immunofluorescence confocal microscopy. PTRF was present at the surface of caveolae in the intact form and in five different truncated forms. Peptides (44 and 45 amino acids long) comprising both the PEST domains were sequenced by nanospray-quadrupole-time-of-flight MS from the full-length PTRF, but were not found in the truncated forms of the protein. Two endogenous cleavage sites corresponding to calpain specificity were identified in PTRF; one of them was in a PEST domain. Both cleavage sites were flanked by mono- or diphosphorylated sequences. The phosphorylation sites were localized to Ser-36, Ser-40, Ser-365 and Ser-366 in PTRF. Caveolae of human adipocytes are proposed to function in targeting, relocation and proteolytic control of PTRF and other PEST-domain-containing signalling proteins.
Co-purification of a subset of host cell proteins (HCPs) with monoclonal antibodies (mAbs) during the capture of mAbs on Protein A affinity chromatography is primarily caused by interactions of HCPs with the mAbs. To date, there is limited information about the identity of those HCPs due to the difficulty in detecting low abundance HCPs in the presence of a large amount of the mAb. Here, an approach is presented that allows identification of HCPs that specifically associate with the mAb, while avoiding interference from the mAb itself. This approach involves immobilization of purified mAb onto chromatography resin via cross-linking, followed by incubation with HCPs obtained from supernatant of non-mAb producer cells that are representative of the expression systems used in mAb manufacturing. The HCPs that bind to the mAb are recovered and identified using mass spectrometry. This approach has not only allowed a comprehensive comparison of HCP subpopulations that associate with different mAbs, but also enabled monitoring of the effects of a variety of wash modifiers on the dissociation of individual HCP–mAb interactions. The dissociation of HCPs that associated with the mAb was monitored by enzyme-linked immunosorbent assay and mass spectrometry. This approach can be utilized as a screening tool to assist the development of effective and targeted wash steps in Protein A chromatography that ensures not only reduction of HCP levels copurified with the mAb but also removal of specific HCPs that may have a potential impact on mAb structural stability and patient safety. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1114–1124, 2014
OBJECTIVEPolymerase I and transcript release factor (PTRF) is a protein highly expressed in adipose tissue and is an integral structural component of caveolae. Here, we report on a novel role of PTRF in lipid mobilization.RESEARCH DESIGN AND METHODSPTRF expression was examined in different adipose depots of mice during fasting, refeeding, and after administration of catecholamines and insulin. Involvement of PTRF during lipolysis was studied upon PTRF knockdown and overexpression and mutation of PTRF phosphorylation sites in 3T3-L1 adipocytes.RESULTSPTRF expression in mouse white adipose tissue (WAT) is regulated by nutritional status, increasing during fasting and decreasing to baseline after refeeding. Expression of PTRF also is hormonally regulated because treatment of mice with insulin leads to a decrease in expression, whereas isoproterenol increases expression in WAT. Manipulation of PTRF levels revealed a role of PTRF in lipolysis. Lentiviral-mediated knockdown of PTRF resulted in a marked attenuation of glycerol release in response to isoproterenol. Conversely, overexpressing PTRF enhanced isoproterenol-stimulated glycerol release. Mass-spectrometric analysis revealed that PTRF is phosphorylated at multiple sites in WAT. Mutation of serine 42, threonine 304, or serine 368 to alanine reduced isoproterenol-stimulated glycerol release in 3T3-L1 adipocytes.CONCLUSIONSOur study is the first direct demonstration for a novel adipose tissue–specific function of PTRF as a mediator of lipolysis and also shows that phosphorylation of PTRF is required for efficient fat mobilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.