Full terms and conditions of use: http://www. informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
The anti-corrosion activity of a newly synthesized ethylene tetra phosphonic acid (ETPA), namely {Ethylenebis [(2-hydroxy-5,1,3-phenylene) bismethylene]} tetraphosphonic acid, against the corrosion of carbon steel in 0.5-M H2SO4 medium and its synergistic effect with Cu[Formula: see text] ions were studied using potentiodynamic polarizations and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization studies indicate that ETPA acts as a mixed-type inhibitor and inhibition efficiency increases with increasing ETPA concentration. The adsorption of ETPA at the surface of carbon steel follows Langmuir adsorption isotherm. EIS results demonstrated the adsorption of ETPA onto the carbon steel surface, leading to the formation of ETPA overlaying film. Addition of [Formula: see text] M Cu[Formula: see text], at low ETPA concentration ([Formula: see text] M), results in significant increase in inhibition efficiency (88%), superior to that obtained at high ETPA concentration (81% at [Formula: see text] M). SEM and EDAX analyses confirmed the existence of a uniform protective film on the electrode surface attributed to ETPA–Cu[Formula: see text] complex formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.