Woven and knitted cardiovascular prostheses are tubular structures made of polyester filaments. They are used as bypasses to derive blood circulation or to replace failed blood vessels. The conditions of use require particular mechanical properties of the graft, such as elasticity and bending. A theoretical model, based on elasticity hypotheses, and a pulsatile flow system were used to determine the mechanical behavior of a knitted vascular graft under fluid pressure. For steady flow, prosthesis bending evolves in direct ratio to pressure. In pulsatile flow conditions, the prosthesis bends but not in proportion to the fluid pressure, showing instead a viscoelastic behavior by the textile structure.
Accurate detection of air bubbles boundaries is of crucial importance in determining the performance and in the study of various gas/liquid two-phase flow systems. The main goal of this work is edge extraction of air bubbles rising in two-phase flow in real-time. To accomplish this, a fast algorithm based on local variance is improved and accelerated on the GPU to detect bubble contour. The proposed method is robust against changes of intensity contrast of edges and capable of giving high detection responses on low contrast edges. This algorithm is performed in two steps: in the first step, the local variance of each pixel is computed based on integral image, and then the resulting contours are thinned to generate the final edge map. We have implemented our algorithm on an NVIDIA GTX 780 GPU. The parallel implementation of our algorithm gives a speedup factor equal to 17x for high resolution images (1024×1024 pixels) compared to the serial implementation. Also, quantitative and qualitative assessments of our algorithm versus the most common edge detection algorithms from the literature were performed. A remarkable performance in terms of results accuracy and computation time is achieved with our algorithm.
Image processing is an effective method for characterizing various two-phase gas/liquid flow systems. However, bubbly flows at a high void fraction impose significant challenges such as diverse bubble shapes and sizes, large overlapping bubble clusters occurrence, as well as out-of-focus bubbles. This study describes an efficient multi-level image processing algorithm for highly overlapping bubbles recognition. The proposed approach performs mainly in three steps: overlapping bubbles classification, contour segmentation and arcs grouping for bubble reconstruction. In the first step, we classify bubbles in the image into a solitary bubble and overlapping bubbles. The purpose of the second step is overlapping bubbles segmentation. This step is performed in two subsequent steps: at first, we classify bubble clusters into touching and communicating bubbles. Then, the boundaries of communicating bubbles are split into segments based on concave point extraction. The last step in our algorithm addresses segments grouping to merge all contour segments that belong to the same bubble and circle/ellipse fitting to reconstruct the missing part of each bubble. An application of the proposed technique to computer generated and high-speed real air bubble images is used to assess our algorithm. The developed method provides an accurate and computationally effective way for overlapping bubbles segmentation. The accuracy rate of well segmented bubbles we achieved is greater than 90 % in all cases. Moreover, a computation time equal to 12 seconds for a typical image (1 Mpx, 150 overlapping bubbles) is reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.