Human mesenchymal stem cells were reseeded in decellularized human bone subject to a controlled mechanical loading to create a bone-on-chip that was cultured for over 26 months. The cell morphology and their secretome were characterized using immunohistochemistry and in situ immunofluorescence under confocal microscopy. The presence of stem cell derived osteocytes was confirmed at 547 days. Different cell populations were identified. Some cells were connected by long processes and formed a network. Comparison of the MSCs in vitro reorganization and calcium response to in situ mechanical stimulation were compared to MLOY4 cells reseeded on human bone. The bone-on-chip produced an ECM of which the strength was nearly a quarter of native bone after 109 days and that contained calcium minerals at 39 days and type I collagen at 256 days. The cytoplasmic calcium concentration variations seemed to adapt to the expected in vivo mechanical load at the successive stages of cell differentiation in agreement with studies using fluid shear flow stimulation. Some degree of bone-like formation over a long period of time with the formation of a newly formed matrix was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.