Amyloid β (Aβ) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. In the brain tissue, Aβ occurs in various forms, including an undecapeptide Aβ, which exerts a neurotoxic effect through the mitochondrial dysfunction and/or Ca-permeable pore formation in cell membranes. This work was aimed at the biophysical characterization of membrane binding and pore formation by Aβ. Interaction of Aβ with anionic and zwitterionic membranes was analyzed by microelectrophoresis. In pore formation experiments, Aβ was incubated in aqueous buffer to form oligomers and added to Quin-2-loaded vesicles. Gradual increase in Quin-2 fluorescence was interpreted in terms of membrane pore formation by the peptide, Ca influx, and binding to intravesicular Quin-2. The kinetics and magnitude of this process were used to evaluate the rate constant of pore formation, peptide-peptide association constants, and the oligomeric state of the pores. Decrease in membrane anionic charge and high ionic strength conditions significantly suppressed membrane binding and pore formation, indicating the importance of electrostatic interactions in these events. Circular dichroism spectroscopy showed that Aβ forms the most efficient pores in β-sheet conformation. The data are consistent with an oligo-oligomeric pore model composed of up to eight peptide units, each containing 6-8 monomers.
The amyloid β (Aβ) peptide and its shorter variants, including a highly cytotoxic Aβ
25–35
peptide, exert their neurotoxic effect during Alzheimer’s disease by various mechanisms, including cellular membrane permeabilization. The intrinsic polymorphism of Aβ has prevented the identification of the molecular basis of Aβ pore formation by direct structural methods, and computational studies have led to highly divergent pore models. Here, we have employed a set of biophysical techniques to directly monitor Ca
2+
-transporting Aβ
25–35
pores in lipid membranes, to quantitatively characterize pore formation, and to identify the key structural features of the pore. Moreover, the effect of membrane cholesterol on pore formation and the structure of Aβ
25–35
has been elucidated. The data suggest that the membrane-embedded peptide forms 6- or 8-stranded β-barrel like structures. The 8-stranded barrels may conduct Ca
2+
ions through an inner cavity, whereas the tightly packed 6-stranded barrels need to assemble into supramolecular structures to form a central pore. Cholesterol affects Aβ
25–35
pore formation by a dual mechanism, i.e., by direct interaction with the peptide and by affecting membrane structure. Collectively, our data illuminate the molecular basis of Aβ membrane pore formation, which should advance both basic and clinical research on Alzheimer’s disease and membrane-associated pathologies in general.
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer’s disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1–42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1–10 (P1), Aβ6–15 (P2), Aβ11–20 (P3), Aβ16–25 (P4), Aβ21–30 (P5), Aβ26–36 (P6), and Aβ31–42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1–42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1–42 molecules and thereby inhibit Aβ1–42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.