Changes in the environment are first observed in changes in the vegetation. Vegetation survey, classification and mapping form the basis on which informed and scientifically defendable decisions on the environment can be taken. The classification and mapping of vegetation is one of the most widely used tools for interpreting complex ecosystems. By identifying different plant communities we are essentially identifying different ecosystems at a particular hierarchical level. Phytosociologists in Europe have been involved in such studies following, in particular, the Braun-Blanquet approach since the early 1900s. In South Africa, such studies were undertaken on a limited basis from the early 1970s and have since then steadily increased. The surveying of the enormous diversity of South African vegetation is one of the objectives of phytosociological studies. The demand for such data has steadily increased over the past few years to guide conservation policies, biodiversity studies and ecosystem management. In South Africa, numerous publications on the vegetation of conservation and other areas in the different biomes have been produced over the last few decades. However, vegetation scientists in South Africa experience unique problems. The purpose of this article is therefore to provide an overview of the history and the specific focus of phytosociological studies in South Africa and to recommend minimum requirements and methods to be followed when conducting such studies. It is believed that the incorporation of these requirements will result in scientifically justifiable research of high quality by phytosociologists in South Africa. Conservation implications: Effective conservation cannot be obtained without a thorough knowledge of the ecosystems present in an area. Consistent vegetation classifications and descriptions form the basis of conservation and monitoring exercises to maintain biodiversity. The incorporation of these guidelines and requirements will facilitate quality phytosociological research in South Africa
This article investigated the knowledge and practice of a nature-based solution to reduce disaster risks of drought, veld fires and floods using wetlands in the eastern Free State, South Africa. A mixed research method approach was used to collect primary data using three data collection tools, namely questionnaires, interviews and field observations. Ninety-five wetlands under communal and private ownership as well as a few in protected areas were sampled, with their users completing questionnaires. The study showed that communal wetlands were more degraded, while wetlands in protected areas and in private commercial farms were in a good ecological state. An extensive literature review reveals that healthy wetlands are effective buffers in reducing disaster risks such as drought, veld fires and floods which are recurrent in the study area. Therefore, through better land-use and management practices, backed by education and awareness, wetlands could be good instruments to mitigate recurrent natural hazards in the agriculturally dominated eastern Free State in South Africa.
McCarthy TS, Tooth S, Kotze DC, Collins N, Wandrag G, Pike T. (2010). The role of geomorphology in evaluating remediation options for a floodplain wetland: the case of Ramsar-listed Seekoeivlei, eastern South Africa. Wetlands Ecology and Management, 18(2),119-134. Sponsorship: University of the WitwatersrandThe range of benefits bestowed by wetlands is today increasingly recognized, and remediation of degraded wetlands is being carried out around the world. Many degraded wetlands are associated with river floodplains, and an essential requirement for their remediation planning is a comprehensive knowledge of the geomorphological functioning of the river channel and floodplain. Here, we review previous geomorphological investigations of the Ramsar-listed Seekoeivlei floodplain wetlands, Free State Province, South Africa, and demonstrate how the knowledge gained is playing a key role in evaluating remediation options that are needed following more than a century of direct and indirect human impacts. Faunal and floral changes, coupled with channel modifications, have altered the flow and sediment regime and initiated major changes to erosional and depositional patterns, including promoting rapid headward growth of a new channel and abandonment of a former channel. These changes have led to further management interventions, including installation of weirs and erosion control structures. In an ideal world, remediation would strive to return a wetland to its natural, pre-impact state but, in reality, other management goals have to be taken into consideration. In the case of Seekoeivlei, these include maintaining current habitat and biodiversity (this has the added advantage of promoting local tourism, especially bird watching), and using the wetlands for water quality enhancement. Attempts to return the wetlands to their pre-impact state (e.g. by removing exotic trees and erosion control structures) would in fact further reduce habitat and biodiversity, permanently in the case of some avian species, and for centuries in the case of some aquatic species, because of the very slow natural rates of channel and floodplain change. Alternative options will all require ongoing intervention, albeit of variable intensity, but in effect will mean that the wetland will never return to its pre-impact state. Remediation will thus create an essentially ?artificial? wetland complex that restores some of the ecological and hydrological functions but that is likely to remain very far from its natural geomorphic condition.Peer reviewe
No previous scientific surveys have been conducted on inselbergs in the Drakensberg. The aim of this study was to collect specimens, identify, describe and name the vegetation clusters and assess biogeographical connections with other Afromontane regions. A total of 103 relevés where sampled from six inselbergs. The plant sampling was carried out according to the Braun-Blanquet method with the plant and environmental data entered in TURBOVEG and exported as a Cornell Condensed format file (CC!) into Juice. Classification was completed using TWINSPAN (Two-way Indicator Species Analysis) (modified), resulting in 4 major communities, 11 communities, 13 sub-communities and 18 variants. Ordination (indirect) was carried out using CANOCO (version 4.5) to investigate the relationship between species. The four major communities identified are Rhodohypoxis rubella (wetland grass and forblands), Scirpus ficinioides – Crassula peploides (sheet rock grass and forblands), Pentaschistis exserta (high-altitude alpine grassland), previously undescribed, and Merxmuellera drakensbergensis – Helichrysum trilineatum (high-altitude alpine fynbos grassland), described in other vegetation and floristic studies. Four habitats were identified, namely wetlands, sheet rock shallow soil, highaltitude alpine grassland and deep soil high-altitude fynbos grasslands. Substrate and moisture availability appeared to be the defining micro-climatic conditions determining the different vegetation clusters whilst altitude is the overriding environmental factor influencing all vegetation.Conservation implications: Rising temperatures as a result of carbon dioxide increase is predicted to drastically decrease the number of endemic and near-endemic montane species, whilst altering the composition of vegetation units which comprise the alpine vegetation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.