Superabsorbent composites based on chitosan-g-poly(acrylamide) and montorillonite (CTS-g-PAAm/MMT) were synthesized through in situ radical polymerization by grafting of crosslinked acrylamide onto chitosan backbone in presence of MMT at different contents. The formation of the grafted network was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The obtained porous structure was observed by scanning electron microscope (SEM). The presence of clay and its interaction with chitosan-g-poly(acrylamide) (CTS-g-PAAm) matrix was evidenced by ATR-FTIR analysis. The morphology was investigated by both X-ray diffraction (XRD) and SEM analyses. It was suggested the formation of mostly exfoliated structures with more porous structures. Besides, the thermal stability of these composites, observed by TGA analysis, was slightly affected by the clay loading as compared to the matrix. These hydrogel composites were also hydrolyzed to achieve anionic hydrogels with ampholytic properties. Swelling behaviors were examined in doubly distilled water, 0.9 wt % NaCl solution and buffer solutions. The water absorbency of all superabsorbent composites was enhanced by adding clay, where the maximum was reached at 5 wt % of MMT. Their hydrolysis has not only greatly optimized their absorption capacity but also improved their swelling rate and salt-resistant ability. The hydrolyzed superabsorbent showed better pH-sensitivity than the unhydrolyzed counterparts. The results of the antibacterial activity of these superabsorbents composites against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), assayed by the inhibitory zone tests, have showed moderate inhibition of the bacteria growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.