Social Networking Sites, such as Facebook and LinkedIn, are clear examples of the impact that the Web 2.0 has on people around the world, because they target an aspect of life that is extremely important to anyone: social relationships. The key to building a social network is the ability of finding people that we know in real life, which, in turn, requires those people to make publicly available some personal information, such as their names, family names, locations and birth dates, just to name a few. However, it is not uncommon that individuals create multiple profiles in several social networks, each containing partially overlapping sets of personal information. Matching those different profiles allows to create a global profile that gives a holistic view of the information of an individual. In this paper, we present an algorithm that uses the network topology and the publicly available personal information to iteratively match profiles across n social networks, based on those individuals who disclose the links to their multiple profiles. The evaluation results, obtained on a real dataset composed of around 2 million profiles, show that our algorithm achieves a high accuracy.
Abstract. The interoperability problem arises in heterogeneous systems where different data sources coexist and there is a need for meaningful information sharing. One of the most representive realms of diversity of data representation is the spatio-temporal domain. Spatio-temporal data are most often described according to multiple and greatly diverse perceptions or viewpoints, using different terms and with heterogeneous levels of detail. Reconciling this heterogeneity to build a fully integrated database is known to be a complex and currently unresolved problem, and few formal approaches exist for the integration of spatio-temporal databases. The paper discusses the interoperation issue in the context of conceptual schema integration. Our proposal relies on two well-known formalisms: conceptual models and description logics. The MADS conceptual model with its multiple representation capabilities allows to fully describe semantics of the initial and integrated spatio-temporal schemas. Description logics are used to express the set of inter-schema mappings. Inference mechanisms of description logics allow us to check the compatibility of the semantic mappings and to propose different structural solutions for the integrated schema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.