In recent years there has been a growing interest in analyzing human behavioral data generated by new technologies. One type of digital footprint that is universal across the world, but that has received relatively little attention to date, is spending behavior.In this paper, using the transaction records of 1306 bank customers, we investigated the extent to which individual-level psychological characteristics can be inferred from bank transaction data. Specifically, we developed a more comprehensive feature space using: (1) overall spending behavior (i.e. total number and total amount of transaction), (2) temporal spending behavior (i.e. variability, persistence, and burstiness), (3) category-related spending behavior (i.e. diversity, persistence, and turnover), (4) customer category profile, and (5) socio-demographic information. Using these features, we first explore their association with individual psychological characteristics, we then analyze the performances of the different feature families and finally, we try to understand to what extent psychological characteristics from spending records can be inferred.Our results show that inferring the psychological traits of an individual is a challenging task, even when using a comprehensive set of features that take temporal aspects of spending into account. We found that Materialism and Self-Control could be inferred with relatively high levels of accuracy, while the accuracy obtained for the Big Five traits was lower, with only Extraversion and Neuroticism reaching reasonable classification performances.Hence, for traits like Materialism, Self-control, Extraversion, and Neuroticism our findings could be used to improve psychologically-informed advertising strategies for specific products as well as personality-based spending management apps and credit scoring approaches.
Twitter is a social network that provides a powerful source of data. The analysis of those data offers many challenges among those stands out the opportunity to find reputation of a product, a person or any other entity of interest. Several approaches for sentiment analysis have been proposed in the literature to assess the general opinion expressed in tweets on an entity. Nevertheless, these methods aggregate sentiment scores retrieved from tweets, which is a static view to evaluate the overall reputation of an entity. The reputation of an entity is not static; entities collaborate with each other, and they get involved in different events over time. A simple aggregation of sentiment scores is then not sufficient to represent this dynamism. In this paper, we present a new approach to determine the reputation of an entity on the basis of the set of events in which it is involved. To achieve this, we propose a new sampling method driven by a tweet weighting measure to give a better quality and summary of the target entity. We introduce the concept of Frequent Named Entities to determine the events involving the target entity. Our evaluation achieved for different entities shows that 90% of the reputation of an entity originates from the events it is involved in and the breakdown into events allows interpreting the reputation in a transparent and self-explanatory way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.