A 3-D original numerical study of entropy generation in the case of liquid metal laminar natural convection in a differentially heated cubic cavity and in the presence of an external magnetic field orthogonal to the isothermal walls is carried out. The effect of this field on the various types of irreversibilities is analyzed. It was observed that in the presence of a magnetic field the generated entropy is distributed on the entire cavity and that the magnetic field limits the 3-D character of the distribution of the generated entropy.
A computational analysis of the natural ventilation process and entropy generation in 3-D prismatic greenhouse was performed using CFD. The aim of the study is to investigate how buoyancy forces influence air-flow and temperature patterns inside the greenhouse having lower level opening in its right heated façade and also upper level opening near the roof top in the opposite cooled façade. The bottom and all other walls are assumed to be perfect thermal insulators. Rayleigh number is the main parameter which changes from 10 3 to 10 6 and Prandtl number is fixed at Pr = 0.71. Results are reported in terms of particles trajectories, iso-surfaces of temperature, mean Nusselt number, and entropy generation. It has been found that the flow structure is sensitive to the value of Rayleigh number and that heat transfer increases with increasing this parameter. Also, it have been noticed that, using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross air-flow (low-level supply and upper-level extraction) inside the greenhouse.
In this article we studied the effect of radiative transfer and the aspect
ratio on the 3D natural convection. Prandtl and Rayleigh numbers are
respectively fixed at 13.6 and 105. Equations of natural convection are
expressed according the vorticity-stream function formulation. This equations
and radiative transfer equation are respectively descritized by volume
control method and the FTnFVM. Obtained simulation show that the principal
flow structure is considerably modified when the radiation-conduction
parameter was varied. However, the peripheral spiraling motion is
qualitatively insensitive to these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.