The Internet of Things (IoT) refers to the interconnection of smart devices to collect data and make intelligent decisions. However, a lack of intrinsic security measures makes IoT vulnerable to privacy and security threats. With its “security by design,” Blockchain (BC) can help in addressing major security requirements in IoT. BC capabilities like immutability, transparency, auditability, data encryption and operational resilience can help solve most architectural shortcomings of IoT. This article presents a comprehensive survey on BC and IoT integration. The objective of this paper is to analyze the current research trends on the usage of BC-related approaches and technologies in an IoT context. This paper presents the following novelties, with respect to related work: (i) it covers different application domains, organizing the available literature according to this categorization, (ii) it introduces two usage patterns, i.e., device manipulation and data management (open marketplace solution), and (iii) it reports on the development level of some of the presented solutions. We also analyze the main challenges faced by the research community in the smooth integration of BC and IoT, and point out the main open issues and future research directions. Last but not least, we also present a survey about novel uses of BC in the machine economy.
Electronic health systems, such as Telecare Medical Information System (TMIS), allow patients to exchange their health information with a medical center/doctor for diagnosis in real-time, and across borders. Given the sensitive nature of health information/medical data, ensuring the security of such systems is crucial. In this paper, we revisit Das et al.'s authentication protocol, which is designed to ensure patient anonymity and untraceability. Then, we demonstrate that the security claims are invalid, by showing how both security features can be compromised. We also demonstrate that the protocol suffers from new smartcard launch attacks. To mitigate such design flaws, we propose a new lightweight authentication protocol using the cryptographic hash function for TMIS. We then analyze the security of the proposed protocol using AVISPA and Scyther, two widely used formal specification tools. The performance analysis demonstrates that our protocol is more efficient than other competing protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.