Age, location and type of choroidal neovascularisation, but not socio-economic deprivation, were associated with VA at presentation in exudative AMD.
MRCP(UK), 4 on behalf of the EMERALD Study Group Purpose: The increasing diabetes prevalence and advent of new treatments for its major visual-threatening complications (diabetic macular edema [DME] and proliferative diabetic retinopathy [PDR]), which require frequent lifelong follow-up, have increased hospital demands markedly. Subsequent delays in patient's evaluation and treatment are causing sight loss. Strategies to increase capacity are needed urgently. The retinopathy (EMERALD) study tested diagnostic accuracy, acceptability, and costs of a new health care pathway for people with previously treated DME or PDR. Design: Prospective, multicenter, case-referent, cross-sectional, diagnostic accuracy study undertaken in 13 hospitals in the United Kingdom. Participants: Adults with type 1 or 2 diabetes previously successfully treated DME or PDR who, at the time of enrollment, had active or inactive disease. Methods: A new health care pathway entailing multimodal imaging (spectral-domain OCT for DME, and 7field Early Treatment Diabetic Retinopathy Study [ETDRS] and ultra-widefield [UWF] fundus images for PDR) interpreted by trained nonmedical staff (ophthalmic graders) to detect reactivation of disease was compared with the current standard care (face-to-face examination by ophthalmologists). Main Outcome Measures: Primary outcome: sensitivity of the new pathway. Secondary outcomes: specificity; agreement between pathways; costs; acceptability; proportions requiring subsequent ophthalmologist assessment, unable to undergo imaging, and with inadequate images or indeterminate findings. Results: The new pathway showed sensitivity of 97% (95% confidence interval [CI], 92%e99%) and specificity of 31% (95% CI, 23%e40%) to detect DME. For PDR, sensitivity and specificity using 7-field ETDRS images (85% [95% CI, 77%e91%] and 48% [95% CI, 41%e56%], respectively) or UWF images (83% [95% CI, 75%e89%] and 54% [95% CI, 46%e61%], respectively) were comparable. For detection of high-risk PDR, sensitivity and specificity were higher when using UWF images (87% [95% CI, 78%e93%] and 49% [95% CI, 42%e56%], respectively, for UWF versus 80% [95% CI, 69e88%] and 40% [95% CI, 34%e47%], respectively, for 7-field ETDRS images). Participants preferred ophthalmologists' assessments; in their absence, they preferred immediate feedback by graders, maintaining periodic ophthalmologist evaluations. When compared with the current standard of care, the new pathway could save £1390 per 100 DME visits and between £461 and £1189 per 100 PDR visits. Conclusions: The new pathway has acceptable sensitivity and would release resources. Users' suggestions should guide implementation. Ophthalmology 2020;-:1e13
BackgroundIn the UK, macular laser is the treatment of choice for people with diabetic macular oedema with central retinal subfield thickness (CST) < 400 μm, as per National Institute for Health and Care Excellence guidelines. It remains unclear whether subthreshold micropulse laser is superior and should replace standard threshold laser for the treatment of eligible patients.MethodsDIAMONDS is a pragmatic, multicentre, allocation-concealed, randomised, equivalence, double-masked clinical trial that aims to determine the clinical effectiveness and cost-effectiveness of subthreshold micropulse laser compared with standard threshold laser, for the treatment of diabetic macular oedema with CST < 400 μm. The primary outcome is the mean change in best-corrected visual acuity in the study eye from baseline to month 24 post treatment. Secondary outcomes (at 24 months) include change in binocular best corrected visual acuity; CST; mean deviation of the Humphrey 10–2 visual field; change in percentage of people meeting driving standards; European Quality of Life-5 Dimensions, National Eye Institute Visual Functioning Questionnaire-25 and VisQoL scores; incremental cost per quality-adjusted life year gained; side effects; number of laser treatments and use of additional therapies.The primary statistical analysis will be per protocol rather than intention-to-treat analysis because the latter increases type I error in non-inferiority or equivalence trials. The difference between lasers for change in best-corrected visual acuity (using 95% CI) will be compared to the permitted maximum difference of five Early Treatment Diabetic Retinopathy Study (ETDRS) letters. Linear and logistic regression models will be used to compare outcomes between treatment groups. A Markov-model-based cost-utility analysis will extend beyond the trial period to estimate longer-term cost-effectiveness.DiscussionThis trial will determine the clinical effectiveness and cost-effectiveness of subthreshold micropulse laser, when compared with standard threshold laser, for the treatment of diabetic macular oedema, the main cause of sight loss in people with diabetes mellitus.Trial registrationInternational Standard Randomised Controlled Trials, ISRCTN17742985. Registered on 19 May 2017 (retrospectively registered).Electronic supplementary materialThe online version of this article (10.1186/s13063-019-3199-5) contains supplementary material, which is available to authorized users.
Background The National Institute for Health and Care Excellence recommends macular laser to treat diabetic macular oedema with a central retinal subfield thickness of < 400 µm on optical coherence tomography. The DIAMONDS (DIAbetic Macular Oedema aNd Diode Subthreshold micropulse laser) trial compared standard threshold macular laser with subthreshold micropulse laser to treat diabetic macular oedema suitable for macular laser. Objectives Determining the clinical effectiveness, safety and cost-effectiveness of subthreshold micropulse laser compared with standard threshold macular laser to treat diabetic macular oedema with a central retinal subfield thickness of < 400 µm. Design A pragmatic, multicentre, allocation-concealed, double-masked, randomised, non-inferiority, clinical trial. Setting Hospital eye services in the UK. Participants Adults with diabetes and centre-involving diabetic macular oedema with a central retinal subfield thickness of < 400 µm, and a visual acuity of > 24 Early Treatment Diabetic Retinopathy Study letters (Snellen equivalent > 20/320) in one/both eyes. Interventions Participants were randomised 1 : 1 to receive 577 nm subthreshold micropulse laser or standard threshold macular laser (e.g. argon laser, frequency-doubled neodymium-doped yttrium aluminium garnet 532 nm laser); laser treatments could be repeated as needed. Rescue therapy with intravitreal anti-vascular endothelial growth factor therapies or steroids was allowed if a loss of ≥ 10 Early Treatment Diabetic Retinopathy Study letters between visits occurred and/or central retinal subfield thickness increased to > 400 µm. Main outcome measures The primary outcome was the mean change in best-corrected visual acuity in the study eye at 24 months (non-inferiority margin 5 Early Treatment Diabetic Retinopathy Study letters). Secondary outcomes included the mean change from baseline to 24 months in the following: binocular best-corrected visual acuity; central retinal subfield thickness; the mean deviation of the Humphrey 10–2 visual field in the study eye; the percentage of people meeting driving standards; and the EuroQol-5 Dimensions, five-level version, National Eye Institute Visual Function Questionnaire – 25 and Vision and Quality of Life Index scores. Other secondary outcomes were the cost per quality-adjusted life-years gained, adverse effects, number of laser treatments and additional rescue treatments. Results The DIAMONDS trial recruited fully (n = 266); 87% of participants in the subthreshold micropulse laser group and 86% of participants in the standard threshold macular laser group had primary outcome data. Groups were balanced regarding baseline characteristics. Mean best-corrected visual acuity change in the study eye from baseline to month 24 was –2.43 letters (standard deviation 8.20 letters) in the subthreshold micropulse laser group and –0.45 letters (standard deviation 6.72 letters) in the standard threshold macular laser group. Subthreshold micropulse laser was deemed to be not only non-inferior but also equivalent to standard threshold macular laser as the 95% confidence interval (–3.9 to –0.04 letters) lay wholly within both the upper and lower margins of the permitted maximum difference (5 Early Treatment Diabetic Retinopathy Study letters). There was no statistically significant difference between groups in any of the secondary outcomes investigated with the exception of the number of laser treatments performed, which was slightly higher in the subthreshold micropulse laser group (mean difference 0.48, 95% confidence interval 0.18 to 0.79; p = 0.002). Base-case analysis indicated no significant difference in the cost per quality-adjusted life-years between groups. Future work A trial in people with ≥ 400 µm diabetic macular oedema comparing anti-vascular endothelial growth factor therapy alone with anti-vascular endothelial growth factor therapy and macular laser applied at the time when central retinal subfield thickness has decreased to < 400 µm following anti-vascular endothelial growth factor injections would be of value because it could reduce the number of injections and, subsequently, costs and risks and inconvenience to patients. Limitations The majority of participants enrolled had poorly controlled diabetes. Conclusions Subthreshold micropulse laser was equivalent to standard threshold macular laser but required a slightly higher number of laser treatments. Trial registration This trial is registered as EudraCT 2015-001940-12, ISRCTN17742985 and NCT03690050. Funding This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 50. See the NIHR Journals Library website for further project information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.