<span>The first year of an engineering student was important to take proper academic planning. All subjects in the first year were essential for an engineering basis. Student performance prediction helped academics improve their performance better. Students checked performance by themselves. If they were aware that their performance are low, then they could make some improvement for their better performance. This research focused on combining the oversampling minority class data with various kinds of classifier models. Oversampling techniques were SMOTE, Borderline-SMOTE, SVMSMOTE, and ADASYN and four classifiers were applied using MLP, gradient boosting, AdaBoost and random forest in this research. The results represented that Borderline-SMOTE gave the best result for minority class prediction with several classifiers.</span>
<span>The World Health Organization (WHO) reported in 2019 that at least 2.2 billion people were visual-impairment or blindness. The main problem of living for visually impaired people have been facing difficulties in moving even indoor or outdoor situations. Therefore, their lives are not safe and harmful. In this paper, we propose</span><span>d</span><span> an assistive application model based on deep learning: YOLOv3 with a Darknet-53 base network for visually impaired people on a smartphone. The Pascal VOC2007 and Pascal VOC2012 were used for the training set and used Pascal VOC2007 test set for validation. The assistive model was installed on a smartphone with an eSpeak synthesizer which generates the audio output to the user. The experimental result showed a high speed and also high detection accuracy. The proposed application with the help of technology will be an effective way to assist visually impaired people to interact with the surrounding environment in their daily life.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.