Multiresistant and especially Methicillin-Resistant Staphylococcus aureus (MRSA) poses a serious public health problem that requires their immediate identification and antibiotic resistance characteristics. In order to determine antibiotic resistance S. aureus poultry and bovine origin, 8840 samples were collected from slaughterhouses in the northern region of Algeria between years 2009 and 2014. 8375 samples were from an avian origin (1875 from laying hens and 6500 from broiler chickens) and the rest was from bovine origin. Bacteriological isolation and identification were made by classical culture method and antibiotic resistance patterns were determined by disc diffusion test. The prevalence of S. aureus was 42% in laying hens, 12% in broilers, and 55% in bovine samples. The prevalence of MRSA was 57%, 50%, and 31% in laying hens, broiler chickens, and bovine, respectively. While MRSA strains isolated from poultry showed cross-resistance to aminoglycosides, fluoroquinolones, macrolides, sulphonamides, and cyclins, those isolated from bovine also revealed similar multiresistance except for sulphonamide. This high percentage of methicillin resistance and multidrug resistance in S. aureus poultry and bovine origin may have importance for human health and curing of human infections.
Eleven avian pathogenic Escherichia coli (APEC) strains isolated from 2006 to 2010 from different farms in Algeria and resistant to cephalosporins were studied. Their susceptibility to antimicrobials was determined by disk diffusion, and the genes responsible for resistance to critical antimicrobials were studied by PCR, sequencing, and conjugation. Their genetic profiles were compared by pulsed-field gel electrophoresis (PFGE). All strains were resistant to extended-spectrum cephalosporins, ciprofloxacin, tetracycline, trimethoprim-sulfamethoxazole, and neomycin and showed the same PFGE profile. For most of them, resistance was encoded by a nontransferable group 1 bla(CTX-M) gene, and multiple mutations were detected in the quinolone resistance-determining regions. The clonal dissemination of this resistant APEC is worrying for animal and public health.
Background and Aim: Avian pathogenic Escherichia coli cause extensive mortality in poultry flocks, leading to extensive economic losses. To date, in Algeria, little information has been available on virulence potential and antibiotics resistance of avian E. coli isolates. Therefore, the aim of this study was the characterization of virulence genes and antibiotic resistance profile of Algerian E. coli strains isolated from diseased broilers. Materials and Methods: In this study, 43 avian E. coli strains isolated from chicken colibacillosis lesions at different years were analyzed to determine their contents in 10 virulence factors by polymerase chain reaction, antimicrobial susceptibility to 22 antibiotics belonging to six different chemical classes and genomic diversity by pulsed-field gel electrophoresis (PFGE). Results: Mainly E. coli isolates (58.1%) carried two at six virulence genes and the most frequent virulence gene association detected were ompT (protectin), hlyF (hemolysin) with 55.8% (p<0.001), and iroN, sitA (iron acquisition/uptake systems), and iss (protectin) with 41.8% (p<0.001). Some strains were diagnosed as virulent according to their virulence gene profile. Indeed, 23.25% of the isolates harbored iroN, ompT, hlyF, iss, and sitA combination, 14% ompT, hlyF, and frzorf4 (sugar metabolism), and 11,6% iroN, hlyF, ompT, iss, iutA (iron acquisition/uptake systems), and frzorf4. The chicken embryo lethality assay performed on five isolates confirmed the potential virulence of these strains. All isolates submitted to PFGE analysis yielded different genetic profiles, which revealed their diversity. Overall, 97.2% of the isolates were resistant to at least one antibiotic and 53.5% demonstrated multi-antimicrobial resistance to three different antimicrobial classes. The highest resistance levels were against nalidixic acid (83.4%), amoxicillin and ampicillin (83.3%), ticarcillin (80.5%), pipemidic acid (75%), and triméthoprim-sulfamethoxazole (66.6%). For beta-lactam class, the main phenotype observed belonged to broad-spectrum beta-lactamases. However, extended-spectrum beta-lactamase associated with three at six virulence factors was also detected in 13 isolates. Two of them were attested virulent as demonstrated in the embryo lethality test which constitutes a real public threat. Conclusion: It would be imperative in avian production to discourage misuse while maintaining constant vigilance guidelines and regulations, to limit and rationalize antimicrobial use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.