In recent decades, the majority of human plague cases (caused by Yersinia pestis) have been reported from Africa. In northwest Uganda, which has had recent plague outbreaks, cat fleas (Ctenocephalides felis) have been reported as the most common fleas in the home environment, which is suspected to be a major exposure site for human plague in this country. In the past, C. felis has been viewed as only a nuisance-biting insect because limited laboratory studies suggested it is incapable of transmitting Y. pestis or is an inefficient vector. Our laboratory study shows that C. felis is a competent vector of plague bacteria, but that efficiency is low compared with another flea species collected in the same area: the oriental rat flea, Xenopsylla cheopis. On the other hand, despite its low vector efficiency, C. felis is the most common flea in human habitations in a plague-endemic region of Uganda (Arua and Nebbi Districts), and occasionally infests potential rodent reservoirs of Y. pestis such as the roof rat (Rattus rattus) or the Nile rat (Arvicanthis niloticus). Plague control programs in this region should remain focused on reducing rat flea populations, although our findings imply that cat fleas should not be ignored by these programs as they could play a significant role as secondary vectors.
Abstract. In Uganda, the West Nile region is the primary epidemiologic focus for plague. The aims of this study were to 1) describe flea-host associations within a plague-endemic region of Uganda, 2) compare flea loads between villages with or without a history of reported human plague cases and between sampling periods, and 3) determine vector loads on small mammal hosts in domestic, peridomestic, and sylvatic settings. We report that the roof rat, Rattus rattus , is the most common rodent collected in human dwellings in each of the 10 villages within the two districts sampled. These rats were commonly infested with efficient Y. pestis vectors, Xenopsylla cheopis and X. brasiliensis in Arua and Nebbi districts, respectively. In peridomestic and sylvatic areas in both districts, the Nile rat, Arvicanthus niloticus , was the most abundant rodent and hosted the highest diversity of flea species. When significant temporal differences in flea loads were detected, they were typically lower during the dry month of January. We did not detect any significant differences in small mammal abundance or flea loads between villages with our without a history of human plague, indicating that conditions during inter-epizootic periods are similar between these areas. Future studies are needed to determine whether flea abundance or species composition changes during epizootics when humans are most at risk of exposure.
The West Nile region of Uganda represents an epidemiologic focus for human plague in east Africa. However, limited capacity for diagnostic laboratory testing means few clinically diagnosed cases are confirmed and the true burden of disease is undetermined. The aims of the study were 1) describe the spatial distribution of clinical plague cases in the region, 2) identify ecologic correlates of incidence, and 3) incorporate these variables into predictive models that define areas of plague risk. The model explained 74% of the incidence variation and revealed that cases were more common above 1,300 m than below. Remotely-sensed variables associated with differences in soil or vegetation were also identified as incidence predictors. The study demonstrated that plague incidence can be modeled at parish-level scale based on environmental variables and identified parishes where cases may be under-reported and enhanced surveillance and preventative measures may be implemented to decrease the burden of plague.
Abstract. Plague, caused by the bacteria Yersinia pestis , is a severe, often fatal disease. This study focuses on the plagueendemic West Nile region of Uganda, where limited information is available regarding environmental and behavioral risk factors associated with plague infection. We conducted observational surveys of 10 randomly selected huts within historically classified case and control villages (four each) two times during the dry season of 2006 ( N = 78 case huts and N = 80 control huts), which immediately preceded a large plague outbreak. By coupling a previously published landscape-level statistical model of plague risk with this observational survey, we were able to identify potential residence-based risk factors for plague associated with huts within historic case or control villages (e.g., distance to neighboring homestead and presence of pigs near the home) and huts within areas previously predicted as elevated risk or low risk (e.g., corn and other annual crops grown near the home, water storage in the home, and processed commercial foods stored in the home). The identified variables are consistent with current ecologic theories on plague transmission dynamics. This preliminary study serves as a foundation for future case control studies in the area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.