Background Reports are available on cross-resistance between antibiotics and biocides. We evaluated the effect of povidone-iodine (PVP-I) and propanol-based mecetronium ethyl sulphate (PBM) on resistance development, antibiotics cross-resistance, and virulence in Staphylococcus aureus. Methods The minimum inhibitory concentration (MIC) of PVP-I and PBM were determined against S. aureus ATCC 25923 using the agar-dilution method. Staphylococcus aureus ATCC 25923 was subjected to subinhibitory concentrations of the tested biocides in ten consecutive passages followed by five passages in a biocide-free medium; MIC was determined after each passage and after the fifth passage in the biocide-free medium. The developed resistant mutant was tested for cross-resistance to different antibiotics using Kirby-Bauer disk diffusion method. Antibiotic susceptibility profiles as well as biocides’ MIC were determined for 97 clinical S. aureus isolates. Isolates were categorized into susceptible and resistant to the tested biocides based on MIC distribution pattern. The virulence of the biocide-resistant mutant and the effect of subinhibitory concentrations of biocides on virulence (biofilm formation, hemolysin activity, and expression of virulence-related genes) were tested. Results PVP-I and PBM MIC were 5000 μg/mL and 664 μg/mL. No resistance developed to PVP-I but a 128-fold increase in PBM MIC was recorded, by repeated exposure. The developed PBM-resistant mutant acquired resistance to penicillin, cefoxitin, and ciprofloxacin. No clinical isolates were PVP-I-resistant while 48.5% were PBM-resistant. PBM-resistant isolates were more significantly detected among multidrug-resistant isolates. PVP-I subinhibitory concentrations (¼ and ½ of MIC) completely inhibited biofilm formation and significantly reduced hemolysin activity (7% and 0.28%, respectively). However, subinhibitory concentrations of PBM caused moderate reduction in biofilm activity and non-significant reduction in hemolysin activity. The ½ MIC of PVP-I significantly reduced the expression of hla, ebps, eno, fib, icaA, and icaD genes. The virulence of the biocide-resistant mutant was similar to that of parent strain. Conclusion PVP-I is a highly recommended antiseptic for use in healthcare settings to control the evolution of high-risk clones. Exposure to PVP-I causes no resistance-development risk in S. aureus, with virulence inhibition by subinhibitory concentrations. Also, special protocols need to be followed during PBM use in hospitals to avoid the selection of resistant strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.