Cleft palate (CP) is the most prevalent craniofacial deformity, with ethnic and geographic variation in prevalence in humans. Mice have been used as an animal model to study the cause(s) of CP by several approaches, including genetic and chemical-induced approaches. Mouse genetic approaches revealed that significant amounts of genes are involved in the CP pathology. The aim of this study was to identify common features of CP-associated genes and to explore the roles of microRNAs (miRNAs) as important post-transcriptional regulators that may be involved in the regulation of CP genes. To generate an accurate list of genes associated with CP, we first conducted systematic literature searches through main databases such as Medline, Embase, and PubMed, as well as other sources such as Scopus and Mouse Genome Informatics. We found that 195 mouse strains with single-gene mutations and 140 mouse strains with compound-gene mutations were reported to have CP. The CP genes were categorized by functions and pathways using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations, highlighting the contribution of cellular metabolism to CP. A total of 18 miRNAs were involved in the regulation of multiple CP genes. Human genotype-phenotype analysis revealed that variants in five human homologous CP genes (IRF6, FOXE1, VAX1, WNT9B, and GAD1) significantly contributed to the human CP phenotype. Thus, our results suggest that cellular metabolism and miRNAs play an important role in the regulation of genetic pathways and networks crucial for palatal formation.
Background Cleft palate (CP) is the second most common congenital birth defect; however, the relationship between CP-associated genes and epigenetic regulation remains largely unknown. In this study, we investigated the contribution of microRNAs (miRNAs) to cell proliferation and regulation of genes involved in CP development. Methods In order to identify all genes for which mutations or association/linkage have been found in individuals with CP, we conducted a systematic literature search, followed by bioinformatics analyses for these genes. We validated the bioinformatics results experimentally by conducting cell proliferation assays and miRNA-gene regulatory analyses in cultured human palatal mesenchymal cells treated with each miRNA mimic. Results We identified 131 CP-associated genes in the systematic review. The bioinformatics analysis indicated that the CP genes were associated with signaling pathways, microRNAs (miRNAs), metabolic pathways, and cell proliferation. A total 17 miRNAs were recognized as potential modifiers of human CP genes. To validate miRNA function in cell proliferation, a main cause of CP, we conducted cell proliferation/viability assays for the top 11 candidate miRNAs from our bioinformatics analysis. Overexpression of miR-133b, miR-374a-5p, and miR-4680-3p resulted in a more than 30% reduction in cell proliferation activity in human palatal mesenchymal cell cultures. We found that several downstream target CP genes predicted by the bioinformatics analyses were significantly downregulated through induction of these miRNAs ( FGFR1 , GCH1 , PAX7 , SMC2 , and SUMO1 by miR-133b; ARNT , BMP2 , CRISPLD1 , FGFR2 , JARID2 , MSX1 , NOG , RHPN2 , RUNX2 , WNT5A and ZNF236 by miR - 374a-5p; and ERBB2 , JADE1 , MTHFD1 and WNT5A by miR-4680-3p) in cultured cells. Conclusions Our results indicate that miR-374a-5p, miR-4680-3p, and miR-133b regulate expression of genes that are involved in the etiology of human CP, providing insight into the association between CP-associated genes and potential targets of miRNAs in palate development. Electronic supplementary material The online version of this article (10.1186/s12920-019-0546-z) contains supplementary material, which is available to authorized users.
This article presents data on genes associated with cleft palate (CP), retrieved through both a full-text systematic review and a mouse genome informatics (MGI) database search. In order to group CP-associated genes according to function, pathway, biological process, and cellular component, the genes were analyzed using category enrichment bioinformatics tools, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). This approach provides invaluable opportunities for the identification of candidate pathways and genes in CP research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.