Abstract.De novo and acquired resistance to endocrinebased therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER -breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER -or ER + breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin.
In the majority of women, breast cancer progresses through increased transcriptional activity due to over-expressed oestrogen receptors (ER). Therapeutic strategies include: (i) reduction of circulating ovarian oestrogens or of peripherally produced oestrogen (in postmenopausal women) with aromatase inhibitors and (ii) application of selective ER modulators for receptor blockade. The success of these interventions is limited by the variable but persistent onset of acquired resistance and by an intrinsic refractiveness which manifests despite adequate levels of ER in about 50% of patients with advanced metastatic disease. Loss of functional ER leads to endocrine insensitivity, loss of cellular adhesion and polarity, and increased migratory potential due to trans-differentiation of the epithelial cancer cells into a mesenchymal-like phenotype (epithelial-mesenchymal transition; EMT). Multiple mechanisms contributing to therapeutic failure have been proposed: (i) loss or modification of ER expression including epigenetic mechanisms, (ii) agonistic actions of selective ER modulators that may be enhanced through an increased expression of co-activators, (iii) attenuation of the tamoxifen metabolism through expression of genetic variants of P450 cytochromes which leads to more or less active metabolites and (iv) increased growth factor signalling particularly through epidermal growth factor receptor activation of pathways involving keratinocyte growth factor, platelet-derived growth factor, and nuclear factor κB. In addition, the small non-coding microRNAs, recently recognized as critical gene regulators, exhibit differential expression in tamoxifen-sensitive versus resistant cell lines. Several studies suggest the potential of using these either as targets or as therapeutic agents to modulate EMT regulators as a means of reversing the aggressive metastatic phenotype by reversal of the EMT, with the added benefit of re-sensitization to anti-oestrogens.
Angiopoietin-like proteins (AnGptL) is a family of eight members known to play an important role in metabolic diseases. Of these, ANGPTL5 is suggested to regulate triglyceride metabolism and is increased in obesity and diabetes. However, its role in metabolic diseases in adolescents is not wellstudied. In this study, we tested the hypothesis of a positive association between plasma ANGPTL5, and obesity, high sensitivity c-reactive protein (HscRp) and oxidized low-density lipoprotein (ox-LDL) in adolescents. Adolescents (n = 431; age 11-14 years) were randomly selected from middle schools in Kuwait. Obesity was classified by the BMI-forage based on the WHO growth charts. Plasma ANGPTL5, HsCRP, and Ox-LDL were measured using ELISA. The prevalence of overweight and obesity was 20.65% and 33.18%, respectively. Mean (SD) plasma ANGPTL5 levels were significantly higher in obese, compared with overweight and normal-weight adolescents (23.05 (8.79) vs 18.39 (7.08) ng/mL, and 18.26 (6.95) ng/ml, respectively). ANGPTL5 was positively associated with both HsCRP (ρ=0.27, p < 0.001) and Ox-LDL (ρ = 0.24, p < 0.001). In Conclusion, ANGPTL5 levels are elevated in obese adolescents and are associated with cardiovascular disease risk factors, HscRp and ox-LDL. the use of ANGPTL5 as a powerful diagnostic and prognostic tool in obesity and metabolic diseases needs to be further evaluated. Childhood obesity has emerged as a major public health problem worldwide. In Arab states in the Gulf region, extremely high prevalence of childhood obesity has been reported 1. On a sample of 13, 000 school children each year, Kuwait Nutritional Surveillance has consistently reported that more than 45% of school children aged 5-19 are either overweight or obese 2. Similarly, a cross-sectional study conducted on 635 public intermediate school children reported that one quarter of the children (25.5%) were overweight and over one third (36.5%) were classified as obese 3. Indoor lifestyle, lack of physical activity and changes in the dietary pattern have been implicated as the underlying causes of childhood obesity in the region. According to the World Health Organization (WHO), the worldwide prevalence of obesity nearly tripled between 1975 and 2016 and is expected to double in the next 25 years. This highlights the importance of dealing with this epidemic. Given the widespread prevalence of obesity and its long-term and short-term complications, one approach to the problem is to focus on the key molecular pathways involved in the development of childhood obesity. This would help identify potential biomarkers that might be used to guide preventive and therapeutic interventions.
PurposeIn this clinical trial, we assessed the efficacy of magnesium (Mg) supplementation in hypomagnesemic type 2 diabetes patients in restoring serum and intracellular Mg levels. The study had two coprimary end points: the change in serum and intracellular Mg level between baseline and after 3 months of supplementation. We compared the efficacy with regard to lowering hemoglobin A1c (HbA1c), C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and 8-isoprostane as secondary end points.Patients and methodsIn an open-label trial, 47 hypomagnesemic type 2 diabetes patients were administered 336 mg Mg daily. At baseline and after 3 months, serum, cellular Mg, and inflammation biomarkers were measured. For intracellular Mg levels, sublingual epithelial cells were analyzed by analytical scanning electron microscopy using computerized elemental X-ray analysis. Blood samples were analyzed for Mg, creatinine, HbA1c, and CRP. Systemic inflammatory markers including TNF-α and the oxidative stress marker 8-isoprostane were determined using enzyme-linked immunosorbent assay.ResultsMg supplementation significantly increased the intracellular and serum levels. Statistically clinical improvement in HbA1c and CRP levels was not observed, but significant decreases in TNF-α as well as in 8-isoprostane were found.ConclusionA feasible clinical method for the assessment of intracellular Mg was demonstrated in tissue samples obtained noninvasively, providing evidence for potential clinical translation of this method to routinely determine intracellular Mg concentration.
Leucine-rich α-2 glycoprotein1 (LRG1) is a member of the leucine-rich repeat (LRR) family that is implicated in multiple diseases, including cancer, aging, and heart failure, as well as diabetes and obesity. LRG1 plays a key role in diet-induced hepatosteatosis and insulin resistance by mediating the crosstalk between adipocytes and hepatocytes. LRG1 also promotes hepatosteatosis by upregulating de novo lipogenesis in the liver and suppressing fatty acid β-oxidation. In this study, we investigated the association of LRG1 with obesity markers, including leptin and other adipokines in adolescents (11–14 years; n = 425). BMI-for-age classification based on WHO growth charts was used to define obesity. Plasma LRG1 was measured by ELISA, while other markers were measured by multiplexing assay. Median (IQR) of LRG1 levels was higher in obese (30 (25, 38) µg/mL) and overweight (30 (24, 39) µg/mL) adolescents, compared to normal-weight participants (27 (22, 35) µg/mL). The highest tertile of LRG1 had an OR [95% CI] of 2.55 [1.44, 4.53] for obesity. LRG1 was positively correlated to plasma levels of high sensitivity c-reactive protein (HsCRP) (ρ = 0.2), leptin (ρ = 0.2), and chemerin (ρ = 0.24) with p < 0.001. Additionally, it was positively associated with plasma level of IL6 (ρ = 0.17) and IL10 (ρ = 0.14) but not TNF-α. In conclusion, LRG1 levels are increased in obese adolescents and are associated with increased levels of adipogenic markers. These results suggest the usefulness of LRG1 as an early biomarker for obesity and its related pathologies in adolescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.