It is essential to monitor urban evolution at spatial and temporal scales to improve our understanding of the changes in cities and their impact on natural resources and environmental systems. Various aspects of remote sensing are routinely used to detect and map features and changes on land and sea surfaces, and in the atmosphere that affect urban sustainability. We provide a critical and comprehensive review of the characteristics of remote sensing systems, and in particular the trade-offs between various system parameters, as well as their use in two key research areas: (a) issues resulting from the expansion of urban environments, and (b) sustainable urban development. The analysis identifies three key trends in the existing literature: (a) the integration of heterogeneous remote sensing data, primarily for investigating or modelling urban environments as a complex system, (b) the development of new algorithms for effective extraction of urban features, and (c) the improvement in the accuracy of traditional spectral-based classification algorithms for addressing the spectral heterogeneity within urban areas. Growing interests in renewable energy have also resulted in the increased use of remote sensing-for planning, operation, and maintenance of energy infrastructures, in particular the ones with spatial variability, such as solar, wind, and geothermal energy. The proliferation of sustainability thinking in all facets of urban development and management also acts as a catalyst for the increased use of, and advances in, remote sensing for urban applications.
Building height is a key geometric attribute for generating 3-D building models. We propose a novel four-stage approach for automated estimation of building heights from their shadows in very high resolution (VHR) multispectral images. First, a building's actual shadow regions are detected by applying ratio-band algorithm to the VHR image. Second, 2-D building footprint geometries are identified using graph theory and morphological fuzzy processing techniques. Third, artificial shadow regions are simulated using the identified building footprint and solar information in the image metadata at predefined height increments. Finally, the difference between the actual and simulated shadow regions at every height increment is computed using Jaccard similarity coefficient. The estimated building height corresponds to the height of the simulated shadow region that resulted in the maximum value for Jaccard index. The algorithm is tested on seven urban sites in Cardiff, U.K. with various levels of morphological complexity. Our method outperforms the past attempts, and the mean error is reduced by at least 21%.
ABSTRACT:Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-theart shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation and detection of the shadow of urban objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.