Biofilm-formed enterococcal urinary tract clinical isolates (n = 92) were used for studying the antibiofilm activity of cinnamon, ginger, and chemical AgNPs. The average particle sizes of cinnamon, ginger, and chemical AgNPs were 8.7, 41.98, and 55.7 nm, respectively. The results of Fourier transform infrared analysis revealed that phytocompounds, such as cinnamaldehyde and gingerol, were the main compounds incorporated in the synthesis of cinnamon and ginger AgNPs, respectively. The purity and crystalline nature of the AgNPs have been confirmed by energy dispersive X-ray and X-ray Diffraction analysis. The results of antimicrobial activity showed that MIC of ginger, cinnamon, and chemical AgNPs were 37.64, 725.7, and 61.08 μg/ml, respectively. On studying the antibiofilm activity of AgNPs at sub-MIC values (1/2, 1/4, and 1/8 MIC), the results revealed that it was concentration dependent. Therefore, further studies were carried out to evaluate the antibiofilm activity of AgNPs at a concentration of 18 μg/ml. The results showed that ginger and chemical AgNPs reduced the formed biofilm to 39.14% and 65.32% and the number of adherent cells on the urinary catheter surface to 42.73% and 69.84%, respectively, as compared to that of the control, while cinnamon AgNPs showed no significant activity. Accordingly, ginger AgNPs had the most potent antibacterial and antiadherent activity against biofilm-associated enterococcal isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.