Carbon dots have stimulated the curiosity of biomedical researchers due to their unique properties, such as less toxicity and high biocompatibility. The synthesis of carbon dots for biomedical application is a core area in research. In the current research, an eco-friendly hydrothermal technique was employed to synthesize high fluorescent, plant-derived carbon dots from Prosopis juliflora leaves extract (PJ-CDs). The synthesized PJ-CDs were investigated by physicochemical evaluation instruments such as fluorescence spectroscopy, SEM, HR-TEM, EDX, XRD, FTIR, and UV-Vis. The UV-Vis absorption peaks obtained at 270 nm due to carbonyl functional groups shifts of n→π*. In addition, a quantum yield of 7.88 % is achieved. The synthesized PJ-CDs showing the presence of carious functional groups O–H, C–H, C=O, O–H, C–N and the obtained particles in spherical shape with an average size of 8 nm. The fluorescence PJ-CDs showed stability against various environmental factors such as a broad range of ionic strength and pH gradient. The antimicrobial activity of PJ-CDs was tested against a Staphylococcus aureus, and a Escherichia coli. The results suggest that the PJ-CDs could substantially inhibit the growth of Staphylococcus aureus. The findings also indicate that PJ-CDs are effective materials for bio-imaging in Caenorhabditis elegans and they can be also used for pharmaceutical applications.
Quantum dots (QDs) are the best emissive materials ever made something that may revolutionize the display industry and lead to a new generation of low cost and high-performance displays. Due to the low absorption cross-section, conventional phosphor colour conversion cannot support high-resolution displays. This gap will be filled by QDs materials because of their remarkable photoluminescence, narrow bandwidth emission, color tunability, high quantum yield and nanoscale size providing a powerful full-colour solution for display technology. QDs based display technology to position itself at the forefront of next-generation display technology competition. The purpose of this paper is to present an overview of QDs based display technology's research progress and application prospects in overseas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.