is research investigates the effects of zinc oxide (ZnO) nanoparticles of varying concentrations 0.0, 0.25, 0.50, 0.75, and 1.0 wt.% on the melting temperatures, wettability, printability, slump, and interfacial microstructure of the ZnO-doped Sn-0.3Ag-0.7Cu lead-free solder pastes on the copper substrate. e results revealed that the introduction of the ZnO particles had no effect on the solidus and liquidus temperatures of the solders. e maximum wettability was achieved with 0.25 wt.% ZnO nanoparticles, while the printability was inversely correlated with the nano-ZnO concentrations. e findings also indicated that, at room temperature, the slumping and the nano-ZnO concentrations were positively correlated and that, under the 150°C thermal condition, the maximum slumping was achieved with 0.25 wt.% ZnO. e slumping mechanism of the SAC0307-xZnO solder pastes is also provided herein. Moreover, the experiments showed that Cu 6 Sn 5 was the single intermetallic compound present in the interfacial layer between the solders and the copper substrate, with the maximum intermetallic layer thickness realized at the 0.25 wt.% ZnO concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.