Silver pyrazolates [[3-(CF3)Pz]Ag]3, [[3-(CF3),5-(CH3)Pz]Ag]3, [[3-(CF3),5-(Ph)Pz]Ag]3, [[3-(CF3),5-(But)Pz]Ag]3, and [[3-(C3F7),5-(But)Pz]Ag]3 have been synthesized by treatment of the corresponding pyrazole with a slight molar excess of silver(I) oxide. This economical and convenient route gives silver pyrazolates in high (>80%) yields. X-ray crystal structures of [[3-(CF3),5-(CH3)Pz]Ag]3, [[3-(CF3),5-(But)Pz]Ag]3, and [[3-(C3F7),5-(But)Pz]Ag]3 show that these molecules have trinuclear structures with essentially planar to highly distorted Ag3N6 metallacycles. [[3-(CF3),5-(CH3)Pz]Ag]3 forms extended columns via intertrimer argentophilic contacts (the closest Ag...Ag separation between the neighboring trimers are 3.355 and 3.426 A). The trinuclear [[3-(CF3),5-(But)Pz]Ag]3 units crystallize in pairs, basically forming "dimers of trimers", with the six silver atom core of the adjacent trimers adopting a chair conformation. However, in these dimers of trimers, even the shortest intertrimer Ag...Ag distance (3.480 A) is slightly longer than the van der Waals contact of silver (3.44 A). [[3-(C3F7),5-(But)Pz]Ag]3, which has two bulky groups on each pyrazolyl ring, shows no close intertrimer Ag...Ag contacts (closest intertrimer Ag...Ag distance = 5.376 A). The Ag-N bond distances and the intratrimer Ag...Ag separations of the silver pyrazolates do not show much variation. However, their N-Ag-N angles are sensitive to the nature (especially, the size) of substituents on the pyrazolyl rings. The pi-acidic [[3,5-(CF3)2Pz]Ag]3 and [[3-(C3F7),5-(But)Pz]Ag]3 form adducts with the pi-base toluene. X-ray data show that they adopt extended columnar structures of the type [[Ag3]2.[toluene]]infinity and [[Ag3]'.[toluene]]infinity ([[3,5-(CF3)2Pz]Ag]3 = [Ag3],[[3-(C3F7),5-(But)Pz]Ag]3 = [Ag3]'), in which toluene interleaves and makes face-to-face contacts with [[3-(C3F7),5-(But)Pz]Ag]3 or dimers of [[3,5-(CF3)2Pz]Ag]3.
There has been modest examination of attentional bias in individuals with cannabis use disorders. Clinical implications of this work are directly relevant to better informing extant evidence-based treatment for substance use disorders (e.g., relapse prevention) and/or developing novel interventions. The overarching aim of this investigation was to examine a novel attentional bias task in adults with cannabis use disorders. Participants were comprised of 25 adults (8 women: M age = 31, SD = 6.8; range = 22–45) with cannabis use disorders (n = 12) and controls (n = 13) without any current (past month) psychopathology. Relative to controls, adults with cannabis use disorders had greater attentional bias scores. These differences were present only at the 125-ms probe time, where the cannabis use disorders group showed greater attentional bias to cannabis cues than the control group (adjusted p = .001, cannabis use disorders mean = 59.9, control mean = −24.8, Cohen's d-effect size for 125 ms = 1.03). The cannabis use disorders group also reported significantly greater perceived stress and post-task stress scores than the control group, but stress was not related to attentional bias. This study informs understanding of the influence of cannabis cues on visual detection and reaction time under different cue-target onset times, as attentional bias was most prevalent under time pressure to detect the probe.
Cocaine-dependent (CD) subjects show attentional bias toward cocaine-related cues, and this form of cue-reactivity may be predictive of craving and relapse. Attentional bias has previously been assessed by models that present drug-relevant stimuli and measure physiological and behavioral reactivity (often reaction time). Studies of several CNS diseases outside of substance use disorders consistently report anti-saccade deficits, suggesting a compromise in the interplay between higher-order cortical processes in voluntary eye control (i.e., anti-saccades) and reflexive saccades driven more by involuntary midbrain perceptual input (i.e., pro-saccades). Here, we describe a novel attentional-bias task developed by using measurements of saccadic eye movements in the presence of cocaine-specific stimuli, combining previously unique research domains to capitalize on their respective experimental and conceptual strengths. CD subjects (N = 46) and healthy controls (N = 41) were tested on blocks of pro-saccade and anti-saccade trials featuring cocaine and neutral stimuli (pictures). Analyses of eye-movement data indicated (1) greater overall anti-saccade errors in the CD group; (2) greater attentional bias in CD subjects as measured by anti-saccade errors to cocaine-specific (relative to neutral) stimuli; and (3) no differences in pro-saccade error rates. Attentional bias was correlated with scores on the obsessive-compulsive cocaine scale. The results demonstrate increased saliency and differential attentional to cocaine cues by the CD group. The assay provides a sensitive index of saccadic (visual inhibitory) control, a specific index of attentional bias to drug-relevant cues, and preliminary insight into the visual circuitry that may contribute to drug-specific cue reactivity.
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10–18 Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10–18 Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.