In this paper, the meta-heuristic multi-objective elitist teaching–learning based optimization technique is implemented for wind farm layout discrete optimization problem. The optimization of wind farm layout addresses the optimum siting among the wind turbines within the wind farm to accomplish economical, profitable, and technical features. The presented methodology is implemented with multi-objective optimization problem through different targets such as minimizing cost, power output maximization, and the saving of the number of turbines. These targets are investigated with some case studies of multi-objective optimization problems in three scenarios of wind (Scenario-I: fixed wind direction and constant speed, Scenario-II: variable wind direction and constant speed, and Scenario-III: variable wind direction and variable speed) for the optimal micro-siting of wind turbines in a given land area that maximizes the power production while minimizing the total cost. To check the effectiveness of the algorithm, firstly, the results obtained for the three different scenarios have been compared with past studies available in the literature. Secondly, the numbers of turbines have also been optimized by using teaching–learning based optimization. It has been observed that the proposed algorithm shows the optimal layouts along with the optimal number of turbines with minimum fitness evaluation. Finally, the concept of elitism has been introduced in the teaching–learning based optimization algorithm. It is proposed that if elitist-teaching–learning based optimization with elite size of 15% is used, computational expense can be significantly reduced. It can be concluded that that the results obtained by the proposed algorithm are more accurate and advantageous than others.
Nowadays, wind energy is receiving considerable attention due to its availability, low cost, and environment-friendly operation. Wind turbines are rarely placed individually but rather in the form of a wind farm with a group of several wind turbines. The purpose of this research is to perform studies on wind turbine farms in order to find the best distribution for wind turbines that maximizes the produced power, hence minimizing the wind farm area. Wind Farm Area Optimization (WFAO) is performed for optimal placement of wind turbines using elitist teaching–learning-based optimization (ETLBO) techniques. Three different scenarios of wind (first is fixed wind direction and constant speed, second is variable wind direction and constant speed, and third is variable wind direction and variable speed) are considered to find the optimal number of turbines and turbine positioning in a minimized squared land area that maximizes the power production while minimizing the total cost. Other research carried out in the past was to find the optimal placement of the wind turbines in a fixed squared land area of 2 km×2 km. In the present study, WFAO–ETLBO algorithm has been implemented to get the optimal land area for the placement of the same number of turbines used in the past research. For Case 1, there is a significant reduction in land area by approximately 30.75%, 45.25%, and 51.75% for each wind scenario, respectively. For Case 2, the reductions in land area for three different wind scenarios are respectively 30.75%, 7.2%, and 7.2%. For Case 3, there is a reduction of 7.2% in land area for each wind scenario. It has been observed that the results obtained by the WFAO–ETLBO algorithm with a significant reduction in the land area along with optimal placement of wind turbines are better than the results obtained from the wind turbines placement in the fixed land area of 2 km×2 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.