Lightweight concrete (LWC) allows for larger spans, fewer piers, and longer bridge designs due to its lower weight and improved durability. Because superstructures with broader shoulders or additional lanes may be improved without requiring extensive work on the substructure, LWC is a particularly desirable construction material at the moment. The goal of this research was to determine the density (unit weight), splitting tensile strength, and elastic modulus of LWC mixtures under various curing circumstances in order to gain a better knowledge of LWC qualities that are critical for long-lasting and costeffective buildings. The researchers also looked at the relationship between the results of the fast chloride permeability test and the outcomes of other tests and the Werner probe surface resistance test to see if the latter may be used to forecast the permeability of LWC mixtures because it is faster and more convenient. Keywords: Light weight aggregate, pumice, compressive strength, density,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.