Summary
Three‐dimensional (3D) flower‐like MoS2 nanostructures were prepared via facile and cost‐effective hydrothermal method by varying hydrothermal temperature (180°C, 200°C, and 220°C) and reaction time (6, 12, 24, and 36 hours). The results demonstrated that the sample prepared at 200°C for 24 hours have 3D flower‐like MoS2 nanostructure (SEM) with hexagonal phase structure (XRD). Moreover, this novel photocatalyst was also modified by lanthanum element (La3+) with varying La3+ atomic ratio (0.5%, 1%, 2%, 3%, and 4%). Interestingly, the La3+ incorporation into MoS2 has good effect on the specific surface area and optical properties of MoS2 photocatalyst. Furthermore, the flower‐like 3%LaMoS2 nanostructure photocatalyst exhibited 5.2‐times higher efficiency for H2 evolution via water splitting as compared with pure MoS2 under the same conditions. This superior efficiency of the photocatalyst for H2 production arises from the positive synergistic effect between MoS2 and lanthanum in the composite photocatalyst due to higher surface area, enhanced light absorption, and inhibited electron‐holes pair recombination. This study presents an expensive photocatalyst for energy production via water spitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.